X/Open CAE Specification

Window Management (X11R5):
Xlib - C Language Binding

X/Open Company Ltd.

O May 1995, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

This specification is derived from documents which are Copyright [0 1985, 1986, 1987, 1988,
1989, 1990, 1991 by Massachusetts Institute of Technology, Cambridge, Massachusetts, and
Digital Equipment Corporation, Maynard, Massachusetts, and Copyright O 1990, 1991 by
Tektronix, Inc. Permission for X/Open to use, copy, modify and distribute this documentation
for any purpose and without fee has been granted by these copyright owners.

X/0pen CAE Specification
Window Management (X11R5): Xlib - C Language Binding

ISBN: ISBN 1-85912-088-1
X/0pen Document Number: C508

Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to X/Open
at:

X/0pen Company Limited
Apex Plaza

Forbury Road

Reading

Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

XoSpecs@xopen.org

X/0pen CAE Specification

Chapter

Chapter

Chapter

Chapter

1
11
1.2
121
122
123
124

2

21
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3
31
3.2
321
3.2.2
3.23
3.3
3.4
35
3.6

41

4.2

421
422
423
424
425
426
4.2.7
428
429

Overview of the X Window System.........ccccovvvviierrinsrinnnn, 1
INEFOAUCTION ... 1
XWiINndow SyStemM OVENVIEWccccveeeviveeriserissisieese e seesesesenes 2

X Platform ADStraction LaYers..........ccovierveriseieneiseeseee s esesse e 2
User Interface PIAtfOrm ... 3
VANSTTalo] (3 QAN o] o] 1107 L[] IO 4
X Application RelatioNShips.......cccociviiireinisiesce s 5

INtroduction tO XHD ... 7
LT 1T T @0 01T o) £ 8
STALUS ..t 10
BT OIS e e 11
Standard Header FIlES ..o 12
GEeNEric Values and TYPES .cvvcveirieirereieseenee s ne e ensens 14
Naming and Argument Conventions within XIib..........cc.ccccocviivnennen, 15
Programming ConSiderations...........cccouveivrieinrsciessiesseese s 16
Character Sets and ENCOAINGS........ccuovvvireiiniseinneineene s 17
Formatting CONVENLIONS ..o 18

Display FUNCLIONS..........ccoocoiiecissesssssssess oo 19
Opening the DISPIAYccccevrieiriicierseere e 20
Obtaining Information about the Display, Image Formats or Screens.....21

(D71 0] F= VALY =T (o S 21
Image Format Functions and MacroS..........ccccovvervveinnenneeneeienes s 26
Screen INformation MAaCKOS...........oeeeiininnee e 28
Generating a NoOperation Protocol ReqUEST.........cccccovvervveveierieieniennns 32
Freeing Client-created Data........ccoccovvveerereinneinisce s 33
ClosSiNg the DiISPIaYcccccviiiiciriire e 34
X Server Connection Close OPerations...........covvvveresenesennsenesessesesnnnns 35

WINAOW FUNCLIONS ..o 37
R TS0 = L Y o 1= ST 38
WINAOW ALLFIDULES.oiiiiiceeee e 40

Background ALHDULE ..o 42
BOrder ALIIDULE ... s 43
Gravity AHIBULES ..o 43
Backing Store AttribULE ..o 44
STV U o (=T gl - Vo S 45
Backing Planes and Backing Pixel Attributes..........ccccccocevvvieviivvciennne. 45
Event Mask and Do Not Propagate Mask Attributescccocu...... 45
Override REIreCt Flag........cuovveevreiiseiseiseese et 45
Colormap AHIDULE........ccoeci e 46

Window Management (X11R5): Xlib - C Language Binding iii

Chapter

Chapter

Chapter

4.2.10
43
44
4.5
4.6
4.7
4.8
49

51
52
53
54
5.5

6.1
6.2

7
7.1
7.2
721
722
7.2.3
73
7.4
7.5
7.6
7.7
7.8
7.8.1
7.8.2
7.8.3
7.8.4
7.85
7.9
7.10
7.10.1
7.10.2
7.10.3
7.10.4
7.11
7111
7.11.2
7.11.3
7114

Contents

CUFSOF ALLFIDULE ...t 46
Creating WINUOWS........ccoiiiiiciiiceseese e senees 47
DeStroying WINAOWScccoviiiiiereisee e saesees 50
1Y/ F=1 o] 01T To N AVAT 0 o [0 11V 51
UNmapping WINAOWScccccviieirseers s 53
Configuring WINAOWScvoveviiiiceiscire e senens 54
Changing Window Stacking Ordercccccveivvvienvinnneinsereseeseeeseees 58
Changing Window AFDULEScccceiveiiieiscisce e 61

Window Information FUNCLIONS ..., 65
Obtaining Window Information............cccceevveniennnnnsinseinneeneeseenens 66
Translating Screen CoordiNates..........occcvvvveiereiinsinn s 70
Properties and ALOMSccccevireirisee e 72
Obtaining and Changing Window Properties.........c.ccocuevvievsievsieneinnnns 75
SEIECTIONS ...t 79

Pixmap and Cursor FUNCLIONS ..o 81
Creating and Freeing PiXMaps.......ccocivrviireveiensnesee s seseesesesesseseseenes 82
Creating, Recoloring and Freeing CUrSOISccoccovveivveresienesiesesieseseseenns 83

Color Management FUNCLIONS.........cccc.coovvvrineeiiesieseesssionn, 87
COlOF SIFUCTUIES ...t 89
(00] (o] S 1 1 T [P 92

RGB Device String Specification...........ccooovvvvvnvervsinseinnenseesee s 92

RGB Intensity String Specificationcccccovveivreienciin s 93

Device-independent String Specifications............ccccoceevvviervicinscenscnnnn 93
Color Conversion Contexts and Gamut Mappingccccoevvevvveereeernene 94
Creating, Copying and Destroying Colormapscccccceeevveivnieinricnnnnns 95
Mapping Color Names t0 ValUEs...........cccovveveivvsennscencesese s 97
Allocating and Freeing Color CellS.........cccoveivciinciencie s 99
Modifying and Querying Colormap Cellsccoocvvvveivreivisinrsiersenns 104
Color Conversion Context FUNCLIONSccoveiiniieenenne e 109

Getting and Setting the Color Conversion Context of a Colormap.. 109

Obtaining the Default Color Conversion ContexXt..........ccoceevvvreenninnns 110

Color Conversion Context IMACKOScoeeierirneieienenssie e 110

Modifying Attributes of a Color Conversion Context.........c..ccccceveee. 111

Creating and Freeing a Color Conversion Contextc.ccccovvevevniennne 112
Converting Between COlOr SPACES.........covvevreereiierinereseesere s seenenes 114
Callback FUNCLIONScoiiiceciccii e 115

Prototype Gamut Compression Procedure..........ccocooervvvreivreienieinninnnns 115

Supplied Gamut Compression Procedures..........ccooovvvviiereiereeiesennnnns 116

Prototype White Point Adjustment Procedure.........c..ccoeevveivvernennnn, 117

Supplied White Point Adjustment Proceduresccocoevveevverenereennnn 118
Gamut QUErYiNg FUNCLIONS ..o 120

Red, Green and BIUE QUETIESc..covviiiiiieiieiieeceere et 120

CIELAD QUETIEScveteeeetecte ettt bbb bbbt enas 122

CIELUV QUETIES.....cuiitiieieete ettt sttt sttt bbb be st ebesbe s ene e 124

TEKHWVC QUETIES ..ottt st st be b 126

X/0pen CAE Specification

Contents

Chapter

Chapter

7.12 Color Management EXIENSIONS.ccovevreeninieienee e e eeseee s 129
7.12.1 (010] [ST o - Lot T 129
7.12.2 Adding Device-independent Color SPaceScccoeevveivrerenereeenieenens 129
7.12.3 Querying Color Space Format and PrefiX.......ccoovvivieeccncencccncene, 130
7.124 Creating Additional Color SPACES.........cccvverreiereieserese s 130
7.125 Parse String Callbackcccovovvviiiiiiccc e 131
7.12.6 Color Specification Conversion Callback...........c..ccoeveveireivnnivscnennenn, 131
7.12.7 FUNCLION SEES...c.iviiiiiiieeee e 132
7.12.8 AddiNG FUNCLION SELS......coiiciicceree e 133
7.12.9 Creating Additional FUNCLION SetS.........ccoccovvviersiinsiese e 133
8 Graphics Context FUNCLIONS..........cc.ccoocviviecisneiesseesssin, 135
8.1 Manipulating Graphics Context/Stateccococvvvveieveierieieneiessesesenenens 136
8.2 Using GC Convenience ROULINEScccccovveivrieiericie e 145
8.2.1 Setting the Foreground, Background, Function, or Plane Mask 145
8.2.2 Setting the Line Attributes and Dashes...........ccocoovveivncinncnnneneciseens 146
8.2.3 Setting the Fill Style and Fill RUlec.coovvivcirciecece e 148
8.2.4 Setting the Fill Tile and SPPIEccoovevveriececcre e 148
8.2.5 Setting the CUrreNt FONT ..o 151
8.2.6 Setting the Clip REGION ..o 151
8.2.7 Setting the Arc Mode, Subwindow Mode and Graphics Exposure . 152
9 GraphiCs FUNCLIONS. ..o 155
9.1 (O [-T= T T o A (=T TR 156
9.2 (00] 0]V a0 [AN T & 157
9.3 Drawing Points, Lines, Rectangles and ArCScccoeovveevveevnenesenicennens 159
9.3.1 Drawing Single and Multiple POINtS ..o 159
9.3.2 Drawing Single and Multiple Lines.........cccccoevvveivcincinscin s 160
9.3.3 Drawing Single and Multiple Rectanglesccccocovivinvnccvncicncnnne, 162
9.34 Drawing Single and MUltiple AICScccoeovveivciscisecee e 163
9.4 LT T AN T LTS 165
94.1 Filling Single and Multiple Rectangles.........cccocvvveviiniinsievcie e 165
9.4.2 Filling a Single POIYQON ... 166
9.4.3 Filling Single and MUItIpIe ArCS.......ccovveieviiieseeseie e 167
9.5 FONE IMIELFICS ..t 169
95.1 Loading and Freeing FONTScccocirveiiiei s 172
952 Obtaining and Freeing Font Names and Information...............c...c...... 174
9.5.3 Computing Character String SiZES........cccvvevveieveieieieneeseeseere e 176
954 Computing Logical EXLENTScccovvveiereeeiesenseeesene e eneens 176
9.5.5 Querying Character String SIZESccovivrvrirrieie s 177
9.6 [T V1V o = ST 180
9.6.1 Drawing ComPIeX TEXLcovvcieireeirsesiseeseese et 180
9.6.2 Drawing Text Characters ... 181
9.6.3 Drawing Image Text CharaCters........cccccveiviviersierisiersene s seeeseee s 182
9.7 Transferring Images between Client and Server..........cccoveveivvcrvcennn, 185

Window Management (X11R5): Xlib - C Language Binding \Y

Vi

Chapter

Chapter

10
10.1
10.2
10.3
10.4
105
10.6
10.7
10.8
10.8.1
10.8.2

11
111
11.2
11.3
114
115
1151
1152
11.6
116.1
11.6.2
11.7
11.7.1
11.7.2
11.8
11.9
1191
11.9.2
11.10
11.10.1
11.10.2
11.10.3
11.10.4
11.10.5
11.10.6
11.10.7
11.10.8
11.10.9
11.10.10
11.11
11111
11.11.2
11.11.3
11114
11.12
11.13

Contents

Window and Session Manager FUNCtions...........ccccoc.oeevienn, 189
Changing the Parent of a WIiNAOW...........ccccocevveincinncic s 190
Controlling the Lifetime of a WindoWccccocvveivcincinscen e, 191
Managing Installed COlOrmMapsccccoeevveeirieinveieree e 193
Setting and Retrieving the Font Search Path..........c..ccccocoovvvinicnicinnnnn, 195
TCT YT g €T =1 o] o1 o T 196
QT [T o [T g TS 197
SCreen SAVEr CONIOL........ccoviiiieec s 198
CoNtrolling HOSE ACCESS......cccvierieriieriresee s st ene s seesenes 200

Adding, Getting or Removing HOSES..........cccoceovveiineiencie e 200
Changing, Enabling or Disabling Access Control............cccceevvviennnnen. 202

EVENTS ... 205
=T oL 1Y/ 0 206
EVENT STIUCTUIES ... 207
EVENTIMASKS ...t 209
Event Processing OVEIVIEW.........c.ccvvcirsinnseiensens s sesessssesesessenenens 210
Keyboard and Pointer EVENTS..........cccoveiveinencie s 212

Pointer BULLON EVENTS ... 212
Keyboard and POINter EVENLS..........ccccovevreiineinnccsee e 212
WiIndow ENtry/ZEXIt EVENTS......ccccovviiircn e 216
Normal EntryZEXit EVENLS........cccvivveiiieeseinceseeses e 217
Graband Ungrab Entry/EXIt EVENtS.........ccccveivveiineineeneseneseseseneens 218
INPUE FOCUS EVENTS ..ottt s 220
Normal Focus Events and Focus Events While Grabbed.................... 221
Focus Events Generated by Grabsccoccovvivvviensinnncn e 223
Key Map State Notification EVENTS.........ccccovvviviervieine e 224
EXPOSUIE EVENTS......coo ettt aene s 225
EXPOSE EVENTS.....coociericeseieise ettt e ene e 225
GraphicsExpose and NOEXPOSE EVENTS.........ccoceevvevreinnnninenieeseennns 226
Window State Change EVENTScccccivveinireinnseneseeseeeseses s 228
CirculateNOtify EVENTS......cccvceiicciee et 228
ConfigureNOLIfy EVENTScocvciveicicc e 229
CreateNOtify EVENTS ..o 230
DestroyNOtify EVENTSccov e 230
GravityNOLITy EVENTS.......ccoov v 231
MAPNOLITY EVENTS ..o 232
MappiNGNOLIfY EVENTS ... 232
ReparentNOotify EVENTS ..o 233
UNMAaPNOLITY EVENTS ..o 234
ViSiDilityNOLify EVENESc.cviciisce e 234
Structure CoNrol EVENTS.........coeiiiiiireeee e 236
CirculateReqUESt EVENTSc.ccvcveiiicicecce s 236
ConfigureReqUESE EVENTS.........ccovviireicee st 236
MapPREQUEST EVENLS........cccoicice e 237
RESIZEREQUEST EVENLSc.ccveviiiec et 238
Colormap State Change EVENLS........ccccovvvivvinc s 239
Client Communication EVENLS............cccceieriirrinneiennnsee s 240

X/0pen CAE Specification

Contents

Chapter

Chapter

Chapter

11.131
11.13.2
11.133
11.13.4
11.135

12
121
12.2
12.3
12.4
1241
12.4.2
1243
125
12.6
12.7
12.8
12.8.1
12.8.2

13

131
13.2
133
134
135
13.6
13.7

14
14.1
14.2
14.3
14.4
14.5
14.6
146.1
14.6.2
14.6.3
14.6.4
14.6.5
14.6.6
14.6.7
14.7
14.8
14.9
14.10

ClieNtMEeSSagEe EVENTS......ccov et 240
PropertyNOtify EVENTS ... 240
SeleCtioNCIEAr EVENLScccviiiciccrs e 241
SelectioNREQUESE EVENLS.........cccvieeiscirece e 242
SelectioNNOLIfy EVENTSccovciiccivce et 242
Event Handling FUNCLIONS...........cc.ccoociviieivnceccsesse s 245
SEIECHING EVENLScvveveceeete et 246
Handling the Output BUFfer ... 247
Event Queue ManagemenT ..o ieieerierereiesese e se s seeannens 248
Manipulating the EVENt QUEUEcccvveoeveierreecere e 249
Returning the NeXt EVENtccccvivvciivsieisen e 249
Selecting Events Using a Predicate Procedureccococveeviercivniennn, 249
Selecting Events Using a Window or Event MasK..........c..ccccocvveivvnnns 251
Putting an Event Back into the QUEUEccccevevvievneiniccee e 254
Sending Events to Other ApplicationS..........cccoovvrriericinn s 255
Getting Pointer Motion HiStOrYccccovovvveninisce e 257
Handling ProtoCol ETOrS.......ccoveiicircece e 258
Enabling or Disabling Synchronizationcccceoevviniiieieveiesninnn, 258
Using the Default Error Handlersccocooveivveieveivensc e 258
INPUL DEeVice FUNCLIONS. ... 263
Pointer Grabbing ... 264
Keyboard Grabbing..........cccocviiiieincciccsccse e 269
Resuming EVENt ProCeSSINGccouveirieiriseinseinisesseeesesesesieseseesesesseenens 272
MOVING the POINTETcovceiees e 274
Controlling INPUL FOCUS ..o 275
Keyboard and Pointer SEtiNGSc.c.covvvvviieveienreeseeses e 277
Keyboard ENCOAING........ccovviriircircee e 282
Locales and Internationalized Text Functions.................... 287
X Locale ManagemENTcccceivieirirei et 288
Locale and Modifier Dependencies...........cccoovervveivneinrciessinssiesesesesenens 290
Creating and Freeing a FONt Set........cccovviiiveie i 292
Obtaining FONt SEt MELIICSccoviveiicie e 296
Drawing Text USiNg FONT SEtS........ccovvcivciiiseisse e 301
INPUt MethOod OVEINVIEWc.covceiiiiieicecce e 304
Input Method ArchiteCture...........cccvveivveiirciiscecere e 305
INPUE CONTEXESveiieiieee ettt 307
Getting Keyboard INPUL ..o 307
FOCUS MaNagemENTcccoveiiereeei et 307
Geometry ManagemMent..........ccooeveriiineveneese e s ennas 308
[T A | =] T o PSR 309
CalIDACKS......ceeee s 309
Variable Argument LIStScccvevieiiriscireie e 310
Input Method FUNCLIONS.........ccooviiireicce e 311
INPUL CONEXE FUNCLIONS ..c.vieeicee st 314
XIC Value ArQUMENTS........cvieiiirieiiesieeestee s etee s sess e sesseneseesenes 317

Window Management (X11R5): Xlib - C Language Binding Vil

viii

Chapter

Chapter

14.10.1
14.10.2
14.10.3
14.10.4
14.10.5
14.10.6
14.10.7
14.11

14111
14.11.2
14.11.3
14114
14.11.5
14.12

14.13

14.14

14.14.1
14.14.2
14.15

15
15.1
15.1.1
15.1.2
15.1.3
15.14
15.1.5
15.1.6
15.1.7
15.1.8
15.1.9
15.1.10
15.1.11
15.1.12
15.1.13
15.2
15.2.1
15.2.2
153
1531
15.3.2

16

16.1
16.2
16.3
16.4
16.5

Contents

Lo o 10 1] 1Y/ [SR 318
CHENTWINAOW ... 318
FOCUS WINAOW ...ttt 319
Resource Name and Classccceeirnnnnieeienennssie e 319
GeomMELrY CallDaCK ... 319
FIEI EVENLES ..ot 319
Preedit and Status AttrDULES ... 320
Callback SEMANLICS.......c.cvivceeeiiii e 323
GeomMELry CallDaCKccociiieieecce e 323
Preedit State CallDacks ... 324
PreeditDraw Callback ... 324
PreeditCaretCallDack ..o 326
Status CallDacks ... 328
EVENT FIIEIING ..o 330
Getting Keyboard INPUL ..o 331
Input Method CONVENLIONSccocvciircicece s 333
Client CONVENTIONS......coooiiiiiiir e 333
Synchronization CONVENTIONS..........cccvveevieriscn e 333
SEHING CONSTANTS ... 334
Inter-client Communication FUNCLIONS.........ccc.cooecvoveeiiieiiieenn, 335
Client to Window Manager Communicationccoceevvervrererierenernnn, 337
Manipulating Top-level WIindOWS. ... 337
Converting String LiStS.......ccovvcoviioineicir e 339
Setting and Reading TexXt Properties.........ccccocvverveivveinneinseeneseseenens 343
Setting and Reading the WM_NAME Property.......cccocvevvivnciesennns 344
Setting and Reading the WM_ICON_NAME Property.......c.cccccevvenns 345
Setting and Reading the WM_HINTS Property........cccocvevviercivneennnns 346
Setting and Reading the WM_NORMAL_HINTS Property............... 348
Setting and Reading the WM_CLASS Property........cccovevvveereeivsenns 352
Setting and Reading the WM_TRANSIENT_FOR Property 353
Setting and Reading the WM_PROTOCOLS Property.......c.cccccevvuenen. 354
Setting and Reading the WM_COLORMAP_WINDOWS Property. 355
Setting and Reading the WM_ICON_SIZE Property.......cccccocevvevnnene. 356
Using Window Manager Convenience FUNCLiONS............ccoceevvcrvcvennen 357
Client to Session Manager COmmMuNicationcccccvveevvieresieresiereeinrnenns 360
Setting and Reading the WM_COMMAND Propertyccccccvevrunne. 360
Setting and Reading the WM_CLIENT_MACHINE Property........... 361
Standard COlOrMAPSccvririeircirereee e 362
Standard Colormap Properties and AtOMS..........ccccvvervvererienenievniereenns 364
Setting and Obtaining Standard Colormaps.........ccccoevvervviersereresenenns 365
Resource Manager FUNCLIONS ... 367
RESOUICE FIle SYNTAX ...ovcviiciceisiccric et 369
Resource Manager Matching RUIESccovivvvvierveisese e 370
QUAIKS ...ttt et sttt et et s b et et e st reebe b be et e e ebesbeneas 371
Creating and Storing Databasescccvvevveireiensienese s 374
Merging Resource Databasesccccovvveivriieveinnsenescesee s 377

X/0pen CAE Specification

Contents

16.6
16.7
16.8
16.9

Chapter 17
17.1
17.11
17.2
17.3
17.4
17.5
17.5.1
17.5.2
1753
17.5.4
17.55
17.6
17.7
17.8
17.9
17.10

Chapter 18
18.1
18.2
18.3

Appendix A

Appendix

Appendix

O O

Appendix

List of Figures

1-1
1-2
1-3
1-4
1-5

LOOKING UP RESOUICESc..cviirieiiietinisiee s sesieresiereses e see e sessesessesesssseessens 379
Storing Into a Resource Database...........cccvvevveievrcenvcise e 381
Enumerating Database ENtriesccccocoveiveienniensienseesee e 383
Parsing Command Line OPLtiONS.........cccovvvriveieresienesniseene s 384
Application Utility FUNCLIONS ..o, 387
Keyboard Utility FUNCLIONSccoovivieicisce e 388
Keysym Classification MacCrOS..........ccovvevrieiineiinieinsinese s 389
Latin-1 Keyboard Event FUNCLIONSccoceovveinicinncnnce e 391
Allocating Permanent StOrageccvvvverersierereinieeneseresesieses e seesesesenes 393
Parsing the WIiNndow GEOMELIYcccooveivrieiininie e 394
Manipulating REQIONScuevieirreiree s 396
Creating, Copying or Destroying Regionsccccocervvivreiiereivreeiesennnnns 396
Moving or Shrinking REQIONScccevviinicccesce s 397
Computing With REQIONS ..o 397
Determining if Regions Are Empty or Equal.......c..ccccocevvivieivvcicnnnne, 398
Locating a Point or a Rectangle in a Region........c..ccoovvvvvvvcenccnicnnnen, 399
USING CUL BUFFEIS......coicecce s s 400
Determining the Appropriate Visual TYPEcccovevveivreivnciereesees e, 402
Manipulating IMagESccivieieeie e 404
Manipulating Bitmapsccovveirierireeeesesere s 407
Using the Context ManN@gEr.........c..cevveereieieseieseine s sesee e sessesenens 410
Additional X/Open ReqUIremMents..........ccooecorvinneiiiesrisssvnennns 413
THE ““CUISOI” FONL.....ciiiiiiiiceeee e 413
KEYSYM VAIUES ...ttt 415
COlOF NBIMIES ..ottt 425
Xlib Functions and Protocol ReqUEesStS............ccccoovverrinnciiennns 427
X FONT CUISOIS.....ooiieiecss et ssnees 439
EXTENSIONS ... 441
Compatibility FUNCLIONSccooooiviececeeces, 461
FNABX ... 471
X WiINAOW SYSteEM OVEINVIEWccocvcveeririeiieeeiesis s sessesesessens 2
X Platform ADBStraction LaYers.........ccoccvvveriviciinsiieseiesseeseesesseseseenenens 3
User Interface Platform..........ccoovi e 4
AN [aTo| (ST QAN o] o] [Tox=1 4 o] o AT 5
X Application Relationships.........cccociiciisienccsc e 6

Window Management (X11R5): Xlib - C Language Binding iX

Contents

X/0pen CAE Specification

Preface

X/Open

X/0pen is an independent, worldwide, open systems organisation supported by most of the
world’s largest information systems suppliers, user organisations and software companies. Its
mission is to bring to users greater value from computing, through the practical implementation
of open systems.

X/0pen’s strategy for achieving this goal is to combine existing and emerging standards into a
comprehensive, integrated, high-value and usable open system environment, called the
Common Applications Environment (CAE). This environment covers the standards, above the
hardware level, that are needed to support open systems. It provides for portability and
interoperability of applications, and so protects investment in existing software while enabling
additions and enhancements. It also allows users to move between systems with a minimum of
retraining.

X/0pen defines this CAE in a set of specifications which include an evolving portfolio of
application programming interfaces (APIs) which significantly enhance portability of
application programs at the source code level, along with definitions of and references to
protocols and protocol profiles which significantly enhance the interoperability of applications
and systems.

The X/Open CAE is implemented in real products and recognised by a distinctive trade mark —
the X/Open brand — that is licensed by X/Open and may be used on products which have
demonstrated their conformance.

X/Open Technical Publications

X/0pen publishes a wide range of technical literature, the main part of which is focussed on
specification development, but which also includes Guides, Snapshots, Technical Studies,
Branding/Testing documents, industry surveys, and business titles.

There are two types of X/Open specification:
« CAE Specifications

CAE (Common Applications Environment) specifications are the stable specifications that
form the basis for X/Open-branded products. These specifications are intended to be used
widely within the industry for product development and procurement purposes.

Anyone developing products that implement an X/Open CAE specification can enjoy the
benefits of a single, widely supported standard. In addition, they can demonstrate
compliance with the majority of X/Open CAE specifications once these specifications are
referenced in an X/Open component or profile definition and included in the X/Open
branding programme.

CAE specifications are published as soon as they are developed, not published to coincide
with the launch of a particular X/Open brand. By making its specifications available in this
way, X/Open makes it possible for conformant products to be developed as soon as is
practicable, so enhancing the value of the X/Open brand as a procurement aid to users.

Window Management (X11R5): Xlib - C Language Binding Xi

Preface

« Preliminary Specifications

These specifications, which often address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations, are
released in a controlled manner for the purpose of validation through implementation of
products. A Preliminary specification is not a draft specification. In fact, it is as stable as
X/0pen can make it, and on publication has gone through the same rigorous X/Open
development and review procedures as a CAE specification.

Preliminary specifications are analogous to the trial-use standards issued by formal standards
organisations, and product development teams are encouraged to develop products on the
basis of them. However, because of the nature of the technology that a Preliminary
specification is addressing, it may be untried in multiple independent implementations, and
may therefore change before being published as a CAE specification. There is always the
intent to progress to a corresponding CAE specification, but the ability to do so depends on
consensus among X/Open members. In all cases, any resulting CAE specification is made as
upwards-compatible as possible. However, complete upwards-compatibility from the
Preliminary to the CAE specification cannot be guaranteed.

In addition, X/Open publishes:
+ Guides

These provide information that X/Open believes is useful in the evaluation, procurement,
development or management of open systems, particularly those that are X/Open-
compliant. X/Open Guides are advisory, not normative, and should not be referenced for
purposes of specifying or claiming X/Open conformance.

- Technical Studies

X/0pen Technical Studies present results of analyses performed by X/Open on subjects of
interest in areas relevant to X/Open’s Technical Programme. They are intended to
communicate the findings to the outside world and, where appropriate, stimulate discussion
and actions by other bodies and the industry in general.

« Snapshots

These provide a mechanism for X/Open to disseminate information on its current direction
and thinking, in advance of possible development of a Specification, Guide or Technical
Study. The intention is to stimulate industry debate and prototyping, and solicit feedback. A
Snapshot represents the interim results of an X/Open technical activity. Although at the time
of its publication, there may be an intention to progress the activity towards publication of a
Specification, Guide or Technical Study, X/Open is a consensus organisation, and makes no
commitment regarding future development and further publication. Similarly, a Snapshot
does not represent any commitment by X/Open members to develop any specific products.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision, in this case as the subject
technology develops and to align with emerging associated international standards. X/Open
makes a distinction between revised specifications which are fully backward compatible and
those which are not:

- a new Version indicates that this publication includes all the same (unchanged) definitive
information from the previous publication of that title, but also includes extensions or
additional information. As such, it replaces the previous publication.

Xii X/Open CAE Specification

Preface

- a new lIssue does include changes to the definitive information contained in the previous
publication of that title (and may also include extensions or additional information). As such,
X/0pen maintains both the previous and new issue as current publications.

Corrigenda

Most X/Open publications deal with technology at the leading edge of open systems
development. Feedback from implementation experience gained from using these publications
occasionally uncovers errors or inconsistencies. Significant errors or recommended solutions to
reported problems are communicated by means of Corrigenda.

The reader of this document is advised to check periodically if any Corrigenda apply to this
publication. This may be done either by email to the X/Open info-server or by checking the
Corrigenda list in the latest X/Open Publications Price List.

To request Corrigenda information by email, send a message to info-server@xopen.co.uk with
the following in the Subject line:

request corrigenda; topic index
This will return the index of publications for which Corrigenda exist.

This Document
This document is a CAE Specification (see above).

This X/Open interface definition is based upon the X Window System Protocol specification. It
includes compatibility functions for earlier releases. It is also is based upon information
contained in the following document:

Xlib - C Language X Interface

MIT X Consortium Standard, X Version 11, Release 5

by Jim Gettys, MIT Project Athena, Ron Newman, MIT Project Athena,
and Robert Scheifler, MIT Laboratory for Computer Science

Although this standard defines the programmatic interface, Xlib, to the X Window System core
protocol, it does not attempt to define the format and semantics of the protocol itself. The
definitive exposition of the protocol is contained in the X Window System Protocol specification
and the documents it refers to.

Only the Xlib - C language binding has been considered in this document. To aid portability of
applications that wish to use the Xlib interface, a default set of font names, color database entries
and key symbol table entries is also defined.

Enhancements have been made to X11 Release 5, but the X11R5 specifications are upwards-
compatible from the X11R4 specifications.
Structure

The source document for this publication, the Xlib - C Language X Interface specification from
MIT, has undergone revision since X11R4, and this is reflected in the new or rearranged chapters
of this publication.

« Chapter 1 gives an overview of the X Window System, and is common to all 4 of the X/Open
Window Management specifications.

- Chapter 2, Introduction to Xlib, includes part of the MIT standard Chapter 1 and some new
X/0pen material.

- Chapters 3 to 17 of this specification are the same as Chapters 2 to 16 of the MIT standard.
Compared with the CAE Specification for X11R4, readers will find that Chapters 6, 7 and 8

Window Management (X11R5): Xlib - C Language Binding Xiii

Preface

and Chapters 13, 14 and 16 are new or re-arranged.

- Chapter 18, Additional X/Open Requirements, describes additional X/Open requirements,
over and above the X Consortium specification.

. are the same as these appendices in the MIT standard.

X/Open Window Management Document Set

This specification is one of four specifications in the X/Open Window Management (X11R5)
document set. The full set comprises:

« X Window System Protocol
« Xlib - C Language Binding
+ X Toolkit Intrinsics
« File Formats and Application Conventions.
These X11R5 specifications are available as a 4-volume set (Document Number T410).

The following table shows the structure and organisation of material in this document set in
terms of the MIT documentation of the X Window System, on which the X/Open document set
is based.

In each document, Chapter 1 is an X/Open overview of the X Window System, which is not in
the MIT documentation.

X/Open Document

Subject

MIT Document

X Window System Protocol

Description and definition of
the X Protocol

X Window System Protocol

Xlib - C Language Binding
Chapters 2-17 and Appendices
A-D

Chapter 18

Description of Xlib functions
and their use

X/0Open additional
requirements

Xlib - C Language X Interface

None

X Toolkit Intrinsics

Description of X Toolkit
functions and their use

X Toolkit Intrinsics

File Formats and Application
Conventions

Various formats and
conventions for application
cooperation and
communication

Inter-Client Communication
Conventions Manual (ICCCM),
Version 1.1

X Logical Font Description
(XLFD), Version 1.4

Compound Text, Version 1.1

Bitmap Distribution Format
(BDF) 2.1

The X Window Management (X11 Release 5) System is required by the X/Open Common
Desktop Environment (XCDE), which defines a common graphical user interface environment.
The other specifications in the XCDE family are:

« X/0pen Common Desktop Environment (XCDE) 2-volume set comprising:

— Definitions and Infrastructure

— Services and Applications

X/0pen CAE Specification

Preface

- Motif Toolkit API (electronic publication)
« Calendaring and Scheduling API (XCS).

Window Management (X11R5): Xlib - C Language Binding

XV

Trade Marks

UNIXD is a registered trade mark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

X/OpenD is a registered trade mark, and the ““X’’ device is a trade mark, of X/Open Company
Limited.

X Window System™ is a trade mark of the Massachusetts Institute of Technology.

XVi X/Open CAE Specification

Acknowledgements

X/0pen acknowledges the use of parts of the document Xlib - C Language X Interface, MIT X
Consortium Standard.

Window Management (X11R5): Xlib - C Language Binding Xvii

XViii

Referenced Documents

The following documents are referenced in this specification:

X11R5 X Protocol

X/0pen CAE Specification, May 1995, Window Management (X11R5): X Window System
Protocol (ISBN: 1-85912-087-3, C507).

X11R5 X Toolkit

X/0pen CAE Specification, May 1995, Window Management (X11R5): X Toolkit Intrinsics
(ISBN: 1-85912-089-X, C509).

X11RS5 File Formats
X/0pen CAE Specification, May 1995, Window Management (X11R5): File Formats and
Applications Conventions (ISBN: 1-85912-090-3, C510).

This comprises:

— Inter-Client Communications Conventions Manual (ICCCM)
— X Logical Font Description (XLFD)

— Compound Text

— Bitmap Distribution Format (BDF).

ISO 8859-1

ISO 8859-1: 1987, Information Processing — 8-bit Single-byte Coded Graphic Character Sets
— Part 1: Latin Alphabet No. 1.

X/0pen CAE Specification

Chapter 1

Overview of the X Window System

1.1 Introduction

The X Window System is a network-transparent windowing system developed under the
auspices of Project Athena at the Massachusetts Institute of Technology. The X Window System
is implemented as a client-server model.* The window system functionality is provided by a
display server, which is resident on a machine which has one or more monochrome or color
raster displays attached. Client applications which require window system services attach to a
server, and subsequently communicate with it, via an Inter-Process Communications
connection. This uses a standard and extensible asynchronous protocol to communicate
window system protocol requests to the server.

A client may, but not necessarily, run on the same machine as the X Server it is connected to.
Applications may reside on hosts remotely connected to the system which hosts the display
server by some kind of local or wide-area networking technology. This is dependent upon the
level of functionality provided by the particular networking environment in which particular
server and client implementations operate.

An X Window System server supports one or more physical, monochrome or color, raster
streens, which display a logical hierarchy of (possibly) overlapping rectangular areas known as
“windows”. Also associated with the server is a number of input devices. Normally these
include a keyboard and some form of pointing device, such as a mouse or digitising tablet.

At the top, or root, of the logical window hierarchy, is the ‘“‘root window’ which completely
covers the physical screen with which the hierarchy is associated. In the normal course of
operation, each ‘“‘root window’ will be partially, or completely, covered by ‘“‘child windows”
created by clients. Due to the organisation of the window hierarchy, an application program
may create a tree of arbitrary depth on each screen. The X Window System Protocol provides
applications with the functionality to create and manipulate windows and their associated
attributes. The X Window System also provides the ability to associate arbitrary data with a
window, access fonts and colors, perform general graphical output, and obtain input from the
available devices, using a canonical, programmatic interface, which embodies a high degree of
device independence.

A client that converses with the server using the X Window System protocol may operate
‘““correctly” in isolation, but might not coexist properly with other clients sharing the same
server. The ICCCM specification is a set of conventions to allow clients to cooperate in the areas
of selections, cut buffers, window management, session management and resources.

Window Management (X11R5): Xlib - C Language Binding 1
0 1995, X/Open Company Limited. NIE111]09,9.0.9.0.

X Window System Overview Overview of the X Window System

1.2 X Window System Overview
The X Window System architecture is divided into two distinct parts (Figure 1-1):
display servers Provide display capabilities and keep track of user input.
clients Application programs that perform specific tasks.

This separation allows the clients and servers either to work together on the same system, or
across a network. Regardless of where the clients are running, all user input and displayed
output will occur on the workstation server. Communication is accomplished (in a network
transparent fashion) using the X Protocol.

Client A

X PROTOCOL

e

Server

S

Figure 1-1 X Window System Overview

1.2.1 X Platform Abstraction Layers
The X Window System consists of several distinct parts. Figure 1-2 shows them as layers.

« The X Protocol defines the format and sequencing of byte streams and semantics (messages)
passed between X Clients and the X Server.

- Xlib specifies the function call interface to build the messages defined by the X Protocol.

- The Xt Intrinsics provide the basic constructs to support the creation and use of user interface
objects (widgets).

2 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Overview of the X Window System X Window System Overview

- The Widgets provide a set of user interface features (such as menus and pushbuttons) and
allow applications to manipulate these features using object-oriented programming
techniques.

Widgets

Xt Intrinsics

Xlib

Figure 1-2 X Platform Abstraction Layers

1.2.2 User Interface Platform

From the programmer’s perspective, the X Window System provides a User Interface Platform
with multiple interfaces (Figure 1-3). Applications can be developed using any or all of these
interfaces, depending on the requirements of the developer. It is important to note here that the
lowest-level interface is Xlib — the X Protocol does not provide a practical programming
interface. Therefore, all interaction with the X Protocol is handled by Xlib calls. It is not
necessary to program directly using Xlib to create an X Window System application. Therefore,
the interface boundaries should be viewed as transparent from a programmer’s perspective (the
programmer may use any or all of them to achieve the desired results in the program).

Window Management (X11R5): Xlib - C Language Binding 3
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

X Window System Overview Overview of the X Window System

v

Widgets
o Layers are
Xt Intrinsics Transparent
Xlib
Y
X Protocol
—

Figure 1-3 User Interface Platform

1.2.3 ASingle X Application

The User Interface platform provides all the services necessary to manage the user interface
aspects of the application. Application functionality is that part of the application which is
independent of any user interface function, but it is the application that knows what it wants to
accomplish through the user interface. The translation of the application’s user interface needs
into user interface actions or displays is achieved through a form of binding.

This binding can be an integral part of the application, indistinguishable from the application
functionality, or it can be a separate module created by a development tool or language and
stored in a separate library or binary module. The separation of application functionality from
user interface functionality (in so far as it is possible) helps to provide application portability and
ease of maintenance.

4 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Overview of the X Window System X Window System Overview

Ul-independent
Functionality

Widgets

Xt Intrinsics Ul Platform

Xlib

X Protocol

4> —

Figure 1-4 A Single X Application

1.2.4 X Application Relationships

The X Window System environment usually consists of several client applications, all
communicating with an X Server at the same time using the X Protocol (Figure 1-5). Some of
these clients have special roles within the environment, such as window and session managers.
In order for all of these applications to work together cooperatively, Inter-Client Communications
Conventions have been established. These ensure that client applications will cooperate in their
use of the server and can also interact directly with each other.

Window Management (X11R5): Xlib - C Language Binding 5
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

X Window System Overview Overview of the X Window System

APPLICATION
4
APPLICATION APPLICATION
v
'\ /
A/ \
A
WINDOW -
MANAGER I < APPLICATION
SESSION
MANAGER
b 4
ICCCM-compliant Communication
<» X Protocol
Figure 1-5 X Application Relationships
6 X/Open CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Chapter 2

Introduction to Xlib

The X Window System is a network-transparent window system that was designed at MIT. X
display servers run on computers with either monochrome or color bitmap display hardware.
The server distributes user input to and accepts output requests from various client programs
located either on the same machine or elsewhere in the network. Xlib is a C subroutine library
that application programs (clients) use to interface with the window system by means of a
stream connection. Although a client usually runs on the same machine as the X server it is
talking to, this need not be the case.

This document is a reference guide to the low-level C-language interface to the X Window System
Protocol. It is neither a tutorial nor a user's guide to programming the X Window System.
Rather, it provides a detailed description of each function in the library as well as a discussion of
the related background information. This document assumes a basic understanding of a
graphics window system and of the C programming language. Other higher-level abstractions
(for example, those provided by the toolkits for X) are built on top of the Xlib library. For further
information about these higher-level libraries, see the Toolkit Intrinsics specification. The X
Window System Protocol provides the definitive word on the behaviour of X. Although
additional information appears here, the protocol document is the ruling document.

To provide an introduction to X programming, this chapter discusses:
- overview of the X Window System
. errors
. standard header files
« naming and argument conventions
« programming considerations

- formatting conventions.

Window Management (X11R5): Xlib - C Language Binding 7
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

General Concepts Introduction to Xlib

2.1

8

General Concepts

Refer to Chapter 1 for an introduction to the concepts and terminology of X Windows. A child
window can be larger than its parent. That is, part or all of the child window can extend beyond
the boundaries of the parent, but all output to a window is clipped by its parent. If several
children of a window have overlapping locations, one of the children is considered to be on top
of or raised over the others thus obscuring them. Output to areas covered by other windows is
suppressed by the window system unless the window has backing store. If a window is
obscured by a second window, the second window obscures only those ancestors of the second
window, which are also ancestors of the first window.

A window has a border zero or more pixels in width, which can be any pattern (pixmap) or solid
color you like. A window usually, but not always, has a background pattern, which will be
repainted by the window system when uncovered. Child windows obscure their parents, and
graphic operations in the parent window usually are clipped by the children.

Each window and pixmap has its own coordinate system. The coordinate system has the X axis
horizontal and the Y axis vertical, with the origin [0, 0] at the upper left. Coordinates are
integral, in terms of pixels, and coincide with pixel centers. For a window, the origin is inside
the border at the inside upper left.

X does not guarantee to preserve the contents of windows. When part or all of a window is
hidden and then brought back onto the screen, its contents may be lost. The server then sends
the client program an Expose event to notify it that part or all of the window needs to be
repainted. Programs must be prepared to regenerate the contents of windows on demand.

X also provides off-screen storage of graphics objects, called pixmaps. Single plane (depth 1)
pixmaps are sometimes referred to as bitmaps. Pixmaps can be used in most graphics functions
interchangeably with windows and are used in various graphics operations to define patterns or
tiles. Windows and pixmaps together are referred to as drawables.

Most of the functions in Xlib just add requests to an output buffer. These requests later execute
asynchronously on the X server. Functions that return values of information stored in the server
do not return (that is, they block) until an explicit reply is received or an error occurs. You can
provide an error handler, which will be called when the error is reported.

If a client does not want a request to execute asynchronously, it can follow the request with a call
to XSync, which blocks until all previously buffered asynchronous events have been sent and
acted on. As an important side effect, the output buffer in Xlib is always flushed by a call to any
function that returns a value from the server or waits for input.

Many Xlib functions will return an integer resource ID, which allows you to refer to objects
stored on the X server. These can be of type Window, Font, Pixmap, Colormap, Cursor and
GContext, as defined in the file <X11/X.h>. These resources are created by requests and are
destroyed (or freed) by requests or when connections are closed. Most of these resources are
potentially sharable between applications, and in fact, windows are manipulated explicitly by
window manager programs. Fonts and cursors are shared automatically across multiple
screens. Fonts are loaded and unloaded as needed and are shared by multiple clients. Fonts are
often cached in the server. Xlib provides no support for sharing graphics contexts between
applications.

Client programs are informed of events. Events may either be side effects of a request (for
example, restacking windows generates Expose events) or completely asynchronous (for
example, from the keyboard). A client program asks to be informed of events. Because other
applications can send events to your application, programs must be prepared to handle (or
ignore) events of all types.

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Introduction to Xlib General Concepts

Input events (for example, a key pressed or the pointer moved) arrive asynchronously from the
server and are queued until they are requested by an explicit call (for example, XNextEvent or
XWindowEvent). In addition, some library functions (for example, XRaiseWindow) generate
Expose and ConfigureRequest events. These events also arrive asynchronously, but the client may
wish to explicitly wait for them by calling XSync after calling a function that can cause the server
to generate events.

Window Management (X11R5): Xlib - C Language Binding 9
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Status

2.2

10

Introduction to Xlib

Status

The Xlib programmatic interface defined by this document is syntactically correct and complete.
All the function definitions specified in this document are mandatory, including the protocol
extension mechanism.

Although the X Window System provides a protocol extension mechanism to allow for
additional features, these additional features are not standardized and often will be vendor-
specific. Their use, although useful and necessary in some applications, cannot be guaranteed to
be present in all computers which implement the X Window System.

No extensions are described here.

Internationalization

The X Window System is 8-bit transparent. Any 8-bit or 16-bit codeset may be used in the font
and text calls. In addition, 8-bit codesets may be used in all strings including filenames, atom
names and color names.

Error messages in an X/Open conformant X Window System implementation will be
internationalizable in order to support localization. For more information, see the X/Open
Internationalisation Guide.

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Introduction to Xlib Errors

2.3 Errors

Some functions return Status, an integer error indication. If the function fails, it returns a zero. If
the function returns a status of zero, it has not updated the return arguments. Because C does
not provide multiple return values, many functions must return their results by writing into
client-passed storage. By default, errors are handled either by a standard library function or by
one that you provide. Functions that return pointers to strings return NULL pointers if the
string does not exist.

The X server reports protocol errors at the time that it detects them. If more than one error could
be generated for a given request, the server can report any of them.

Because Xlib usually does not transmit requests to the server immediately (that is, it buffers
them), errors can be reported much later than they actually occur. For debugging purposes,
however, Xlib provides a mechanism for forcing synchronous behaviour (see Section 12.8.1).
When synchronization is enabled, errors are reported as they are generated.

When Xlib detects an error, it calls an error handler, which your program can provide. If you do
not provide an error handler, the error is printed, and your program terminates.

Window Management (X11R5): Xlib - C Language Binding 11
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Standard Header Files Introduction to Xlib

2.4

12

Standard Header Files
The following include files are part of the Xlib standard.

<X11/Xlib.h>
This is the main header file for Xlib. The majority of all Xlib symbols are declared by
including this file. This file also contains the preprocessor symbol XlibSpecificationRelease.
This symbol is defined to have the 5’ in this release of the standard. (Earlier releases of
Xlib did not have this symbol.)

<X11/X.h>
This file declares types and constants for the X protocol that are to be used by applications.
It is included automatically from <X11/Xlib.h>, so application code should never need to
reference this file directly.

<X11/Xcms.h>
This file contains symbols for much of the color management facilities described in Chapter
7. All functions, types and symbols with the prefix ‘“Xcms’, plus the Color Conversion
Contexts macros, are declared in this file. <X11/Xlib.h> must be included before including
this file.

<X11/Xutil.h>
This file declares various functions, types and symbols used for inter-client communication
and application utility functions, described in Chapter 15 and Chapter 17. <X11/Xlib.h>
must be included before including this file.

<X11/Xresource.h>
This file declares all functions, types, and symbols for the resource manager facilities,
described in Chapter 16. <X11/Xlib.h> must be included before including this file.

<X11/Xatom.h>
This file declares all predefined atoms, symbols with prefix “XA_".

<X11/cursorfont.h>
This file declares the cursor symbols for the standard cursor font, listed in Appendix B. All
symbols have the prefix “XC_"".

<X11l/keysymdef.h>
This file declares all standard KeySym values, symbols with prefix “XK_"". The KeySyms
are arranged in groups, and a preprocessor symbol controls inclusion of each group. The
preprocessor symbol must be defined prior to inclusion of the file to obtain the associated
values. The preprocessor symbols are: XK_MISCELLANY, XK LATIN1, XK_LATINZ2,
XK_LATIN3, XK_LATIN4, XK_KATAKANA, XK_ARABIC, XK_CYRILLIC, XK_GREEK,
XK_TECHNICAL, XK_SPECIAL, XK_PUBLISHING, XK_APL and XK_HEBREW.

<X11l/keysym.h>
This file defines the preprocessor symbols XK_MISCELLANY, XK_LATIN1, XK_LATINZ,
XK_LATIN3, XK_LATIN4 and XK_GREEK, and then includes <X11/keysymdef.h>.

<X11/Xlibint.h>
This file declares all the functions, types and symbols used for extensions, described in
Appendix B. This file automatically includes <X11/Xlib.h>.

<X11/Xproto.h>
This file declares types and symbols for the basic X protocol, for use in implementing
extensions. It is included automatically from <X11/Xlibint.h>, so application and extension
code should never need to reference this file directly.

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Introduction to Xlib Standard Header Files

<X11/Xprotostr.h>
This file declares types and symbols for the basic X protocol, for use in implementing

extensions. It is included automatically from <X11/Xproto.h>, so application and extension
code should never need to reference this file directly.

<X11/X10.h>
This file declares all the functions, types and symbols used for the X10 compatibility

functions, described in Appendix D.

Window Management (X11R5): Xlib - C Language Binding 13
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Generic Values and Types Introduction to Xlib

2.5 Generic Values and Types
The following symbols are defined by Xlib and used throughout the manual:
« Xlib defines the type Bool and the boolean values True and False.
+ None is the universal null resource 1D or atom.
« The type XID is used for generic resource IDs.

« The type XPointer is defined to be ‘“‘char *” and is used as a generic opaque pointer to data.

14 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Introduction to Xlib Naming and Argument Conventions within Xlib

2.6 Naming and Argument Conventions within Xlib

Xlib follows a number of conventions for the naming and syntax of the functions. Given that
you remember what information the function requires, these conventions are intended to make
the syntax of the functions more predictable.

The major naming conventions are:

To differentiate the X symbols from the other symbols, the library uses mixed case for
external symbols. It leaves lower case for variables and all upper case for user macros, as per
existing convention.

All Xlib functions begin with a capital X.
The beginnings of all function names and symbols are capitalized.

All user-visible data structures begin with a capital X. More generally, anything that a user
might dereference begins with a capital X.

Macros and other symbols do not begin with a capital X. To distinguish them from all user
symbols, each word in the macro is capitalized.

All elements of or variables in a data structure are in lower case. Compound words, where
needed, are constructed with underscores (_).

The display argument, where used, is always first in the argument list.

All resource objects, where used, occur at the beginning of the argument list immediately
after the display argument.

When a graphics context is present together with another type of resource (most commonly,
a drawable), the graphics context occurs in the argument list after the other resource.
Drawables outrank all other resources.

Source arguments always precede the destination arguments in the argument list.
The x argument always precedes the y argument in the argument list.
The width argument always precedes the height argument in the argument list.

Where the X, y, width and height arguments are used together, the x and y arguments always
precede the width and height arguments.

Where a mask is accompanied with a structure, the mask always precedes the pointer to the
structure in the argument list.

Window Management (X11R5): Xlib - C Language Binding 15
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Programming Considerations Introduction to Xlib

2.7 Programming Considerations
The major programming considerations are:

- Coordinates and sizes in X are actually 16-bit quantities. This decision was taken to
minimize the bandwidth required for a given level of performance. Coordinates usually are
declared as an “‘int” in the interface. Values larger than 16 bits are truncated silently. Sizes
(width and height) are declared as unsigned quantities.

- Keyboards are the greatest variable between different manufacturers’ workstations. If you
want your program to be portable, you should be particularly conservative here.

- Many display systems have limited amounts of off-screen memory. If you can, you should
minimize use of pixmaps and backing store.

- The user should have control of his screen real estate. Therefore, you should write your
applications to react to window management rather than presume control of the entire
screen. What you do inside of your top-level window, however, is up to your application.
For further information, see Chapter 15 and the ICCCM specification.

16 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Introduction to Xlib Character Sets and Encodings

2.8

Character Sets and Encodings

Some of the Xlib functions make reference to specific character sets and character encodings.
The following ones are the most common:

X Portable Character Set
A basic set of 97 characters which are assumed to exist in all locales supported by Xlib. This
set contains the following characters:

a.z A.Z 0.9
"H#$%& () +,-.[<=>?@N"_{|}
<space>, <tab> and <newline>

This is the left/lower half of the graphic character set of ISO 8859-1 plus <space>, <tab> and
<newline>. It is also the set of graphic characters in 7-bit ASCII plus the same three control
characters. The actual encoding of these characters on the host is system-dependent.

Host Portable Character Encoding
The encoding of the X Portable Character Set on the host. The encoding itself is not defined
by this standard, but the encoding must be the same in all locales supported by Xlib on the
host. If a string is said to be in the Host Portable Character Encoding, then it only contains
characters from the X Portable Character Set, in the host encoding.

Latin-1
The coded character set defined by ISO 8859-1.

STRING encoding
Latin-1, plus tab and newline.

POSIX Portable Filename Character Set
The set of 65 characters which can be used in naming files on a POSIX-compliant host that
are correctly processed in all locales. The set is:

a.z A.Z 0.9 .-

Window Management (X11R5): Xlib - C Language Binding 17
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Formatting Conventions Introduction to Xlib

2.9

18

Formatting Conventions
This document uses the following conventions:

« Global symbols are printed in italics. These can be either function names, symbols defined in

include files, or structure names. Arguments are printed in italics.

Each function is introduced by a general discussion that distinguishes it from other functions.
The function declaration itself follows, and each argument is specifically explained.
Although ANSI C function prototype syntax is not used, Xlib header files normally declare
functions using function prototypes in ANSI C environments. General discussion of the
function, if any is required, follows the arguments. Where applicable, the last paragraph of
the explanation lists the possible Xlib error codes that the function can generate. For a
complete discussion of the Xlib error codes, see Section 12.8.2 on page 258.

To eliminate any ambiguity between those arguments that you pass and those that a function
returns to you, the explanations for all arguments that you pass start with the word specifies
or, in the case of multiple arguments, the word specify. The explanations for all arguments
that are returned to you start with the word returns or, in the case of multiple arguments, the
word return. The explanations for all arguments that you can pass and are returned start
with the words specifies and returns.

Any pointer to a structure that is used to return a value is designated as such by the _return
suffix as part of its name. All other pointers passed to these functions are used for reading
only. A few arguments use pointers to structures that are used for both input and output
and are indicated by using the _in_out suffix.

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.0.

Chapter 3

Display Functions

Before your program can use a display, you must establish a connection to the X server. Once
you have established a connection, you then can use the Xlib macros and functions discussed in
this chapter to return information about the display. This chapter discusses how to:

« open (connect to) the display

- obtain information about the display, image format and screen
- free client-created data

- close (disconnect from) a display.

The chapter concludes with a general discussion of what occurs when the connection to the X
server is closed.

Window Management (X11R5): Xlib - C Language Binding 19
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Opening the Display Display Functions

3.1

20

Opening the Display
To open a connection to the X server that controls a display, use XOpenDisplay.

Display *XOpenDisplay(display name)
char * display name ;

display_name Specifies the hardware display name, which determines the display and
communications domain to be used. On a POSIX-conformant system, if the
display_name is NULL, it defaults to the value of the DISPLAY environment
variable.

The encoding and interpretation of the display name is implementation-dependent. Strings in
the Host Portable Character Encoding are supported; support for other characters is
implementation-dependent. On POSIX-conformant systems, the display name or DISPLAY
environment variable can be a string in the format:

hostname : number. screen_number

hostname Specifies the name of the host machine on which the display is physically
attached. You follow the hostname with either a single colon (;) or a double
colon (::).

number Specifies the number of the display server on that host machine. You may

optionally follow this display number with a period (.). A single CPU can
have more than one display. Multiple displays are usually numbered starting
with zero.

screen_number Specifies the screen to be used on that server. Multiple screens can be
controlled by a single X server. The screen_number sets an internal variable
that can be accessed by using the DefaultScreen macro or the XDefaultScreen
function if you are using languages other than C (see Section 3.2.1).

For example, the following would specify screen 1 of display 0 on the machine named ‘“‘dual-
headed’”:

dual-headed:0.1

The XOpenDisplay function returns a Display structure that serves as the connection to the X
server and that contains all the information about that X server. XOpenDisplay connects your
application to the X server through TCP or DECnet communications protocols, or through some
local inter-process communication protocol. If the hosthame is a host machine name and a
single colon (:) separates the hostname and display number, XOpenDisplay connects using TCP
streams. If the hostname is not specified, Xlib uses whatever it believes is the fastest transport.
If the hostname is a host machine name and a double colon (::) separates the hostname and
display number, XOpenDisplay connects using DECnet. A single X server can support any or all
of these transport mechanisms simultaneously. A particular Xlib implementation can support
many more of these transport mechanisms.

If successful, XOpenDisplay returns a pointer to a Display structure, which is defined in
<X11/Xlib.h>. If XOpenDisplay does not succeed, it returns NULL. After a successful call to
XOpenDisplay, all of the screens in the display can be used by the client. The screen number
specified in the display_name argument is returned by the DefaultScreen macro (or the
XDefaultScreen function). You can access elements of the Display and Screen structures only by
using the information macros or functions. For information about using macros and functions to
obtain information from the Display structure, see Section 3.2.1.

X servers may implement various types of access control mechanisms (see Section 10.8).

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Display Functions Obtaining Information about the Display, Image Formats or Screens

3.2 Obtaining Information about the Display, Image Formats or Screens

The Xlib library provides a number of useful macros and corresponding functions that return

data from the Display structure. The macros are used for C programming, and their

corresponding function equivalents are for other language bindings. This section discusses:
- display macros
- image format macros
+ screen macros.

All other members of the Display structure (that is, those for which no macros are defined) are

private to Xlib and must not be used. Applications must never directly modify or inspect these

private members of the Display structure.

Note: The XDisplayWidth, XDisplayHeight, XDisplayCells, XDisplayPlanes, XDisplayWidthMM
and XDisplayHeightMM functions in the next sections are misnamed. These functions
really should be named Screenwhatever and XScreenwhatever, not Displaywhatever or
XDisplaywhatever. Our apologies for the resulting confusion.

3.21 Display Macros

Applications should not directly modify any part of the Display and Screen structures. The

members should be considered read-only, although they may change as the result of other

operations on the display.

The following lists the C-language macros, their corresponding function equivalents that are for

other language bindings, and what data they both can return.

AllPlanes
unsigned long XAllIPlanes()

Both return a value with all bits set to 1 suitable for use in a plane argument to a procedure.

Both BlackPixel and WhitePixel can be used in implementing a monochrome application. These

pixel values are for permanently allocated entries in the default colormap. The actual RGB (red,

green and blue) values are settable on some screens and, in any case, may not actually be black
or white. The names are intended to convey the expected relative intensity of the colors.
BlackPixel(display , screen_number)
unsigned long XBlackPixel(display , screen_number)
Display * display ;
int screen_number ;

display Specifies the connection to the X server.

screen_number Specifies the appropriate screen number on the host server.

Both return the black pixel value for the specified screen.

WhitePixel(display , screen_number)

unsigned long XWhitePixel(display , screen_number)
Display * display ;
int screen_number ;

display Specifies the connection to the X server.

Window Management (X11R5): Xlib - C Language Binding 21

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Obtaining Information about the Display, Image Formats or Screens Display Functions

screen_number Specifies the appropriate screen number on the host server.
Both return the white pixel value for the specified screen.
ConnectionNumber(display)
int XConnectionNumber(display)
Display * display ;
display Specifies the connection to the X server.

Both return a connection number for the specified display. On a POSIX-conformant system, this
is the file descriptor of the connection.

DefaultColormap(display , screen_number)
Colormap XDefaultColormap(display , screen_number)

Display * display ;
int screen_number ;

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host server.

Both return the default colormap ID for allocation on the specified screen. Most routine
allocations of color should be made out of this colormap.

DefaultDepth(display , screen_number)
int XDefaultDepth(display , screen_number)

Display * display ;
int screen_number ;

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host server.

Both return the depth (number of planes) of the default root window for the specified screen.
Other depths may also be supported on this screen (see XMatchVisuallnfo).

To determine the number of depths that are available on a given screen, use XListDepths.

int *XListDepths(display , screen_number , count return)
Display * display ;
int screen_number ;
int * count return

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host server.
count_return Returns the number of depths.

The XListDepths function returns the array of depths that are available on the specified screen. If
the specified screen_number is valid and sufficient memory for the array can be allocated,
XListDepths sets count_return to the number of available depths. Otherwise, it does not set
count_return and returns NULL. To release the memory allocated for the array of depths, use
XFree.

22 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Display Functions Obtaining Information about the Display, Image Formats or Screens

DefaultGC(display , screen_number)

GC XDefaultGC(display , screen_number)
Display * display ;
int screen_number ;

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host server.

Both return the default graphics context for the root window of the specified screen. This GC is
created for the convenience of simple applications and contains the default GC components with
the foreground and background pixel values initialized to the black and white pixels for the
screen, respectively. You can modify its contents freely because it is not used in any Xlib
function. This GC should never be freed.

DefaultRootWindow(display)
Window XDefaultRootWindow(display)
Display * display ;
display Specifies the connection to the X server.
Both return the root window for the default screen.
DefaultScreenOfDisplay/(display)
Screen *XDefaultScreenOfDisplay(display)
Display * display ;
display Specifies the connection to the X server.
Both return a pointer to the default screen.
ScreenOfDisplay(display , screen_number)
Screen *XScreenOfDisplay(display , screen_number)

Display * display ;
int screen_number ;

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host server.
Both return a pointer to the indicated screen.
DefaultScreen(display)
int XDefaultScreen(display)
Display * display ;
display Specifies the connection to the X server.

Both return the default screen number referenced by the XOpenDisplay function. This macro or
function should be used to retrieve the screen number in applications that will use only a single
screen.

Window Management (X11R5): Xlib - C Language Binding 23
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Obtaining Information about the Display, Image Formats or Screens Display Functions

DefaultVisual(display , screen_number)

Visual *XDefaultVisual(display , screen_number)
Display * display ;
int screen_number ;

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host server.

Both return the default visual type for the specified screen. For further information about visual
types, see Section 4.1.

DisplayCells(display , screen_number)
int XDisplayCells(display , screen_number)

Display * display ;
int screen_number ;

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host server.
Both return the number of entries in the default colormap.

DisplayPlanes(display , screen_number)

int XDisplayPlanes(display , screen_number)

Display * display ;
int screen_number ;

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host server.

Both return the depth of the root window of the specified screen. For an explanation of depth,
see the glossary.

DisplayString(display)

char *XDisplayString(display)
Display * display ;

display Specifies the connection to the X server.

Both return the string that was passed to XOpenDisplay when the current display was opened.
On POSIX-conformant systems, if the passed string was NULL, these return the value of the
DISPLAY environment variable when the current display was opened. These are useful to
applications that invoke the fork system call and want to open a new connection to the same
display from the child process as well as for printing error messages.

long XMaxRequestSize(display)
Display * display ;

display Specifies the connection to the X server.

XMaxRequestSize returns the maximum request size (in 4-byte units) supported by the server.
Single protocol requests to the server can be no longer than this size. The protocol guarantees
the size to be no smaller than 4096 units (16384 bytes). Xlib automatically breaks data up into
multiple protocol requests as necessary for the following functions: XDrawPoints,
XDrawRectangles, XDrawSegments, XFillArcs, XFillRectangles and XPutlmage.

24 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Display Functions Obtaining Information about the Display, Image Formats or Screens

LastknownRequestProcessed(display)
unsigned long XLastKnownRequestProcessed(display)
Display * display ;
display Specifies the connection to the X server.

Both extract the full serial number of the last request known by Xlib to have been processed by
the X server. Xlib automatically sets this number when replies, events and errors are received.

NextRequest(display)
unsigned long XNextRequest(display)
Display * display ;
display Specifies the connection to the X server.

Both extract the full serial number that is to be used for the next request. Serial numbers are
maintained separately for each display connection.

ProtocolVersion(display)
int XProtocolVersion(display)
Display * display ;
display Specifies the connection to the X server.

Both return the major version number (11) of the X protocol associated with the connected
display.

ProtocolRevision(display)
int XProtocolRevision(display)
Display * display ;
display Specifies the connection to the X server.
Both return the minor protocol revision number of the X server.
QLength(display)
int XQLength(display)
Display * display ;
display Specifies the connection to the X server.

Both return the length of the event queue for the connected display. Note that there may be
more events that have not been read into the queue yet (see XEventsQueued).

RootWindow(display , screen_number)
Window XRootWindow(display , screen_number)

Display * display ;
int screen_number ;

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host server.

Both return the root window. These are useful with functions that need a drawable of a
particular screen and for creating top-level windows.

Window Management (X11R5): Xlib - C Language Binding 25
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Obtaining Information about the Display, Image Formats or Screens Display Functions

3.2.2

26

ScreenCount(display)
int XScreenCount(display)
Display * display ;
display Specifies the connection to the X server.
Both return the number of available screens.
ServerVendor(display)
char *XServerVendor(display)
Display * display ;
display Specifies the connection to the X server.

Both return a pointer to a null-terminated string that provides some identification of the owner
of the X server implementation. If the data returned by the server is in the Latin Portable
Character Encoding, then the string is in the Host Portable Character Encoding. Otherwise, the
contents of the string are implementation-dependent.

VendorRelease(display)
int XVendorRelease(display)
Display * display ;
display Specifies the connection to the X server.

Both return a number related to a vendor’s release of the X server.

Image Format Functions and Macros

Applications are required to present data to the X server in a format that the server demands. To
help simplify applications, most of the work required to convert the data is provided by Xlib (see
Section 9.7 and Section 17.8).

The XPixmapFormatValues structure provides an interface to the pixmap format information that
is returned at the time of a connection setup. It contains:

typedef struct {
int depth;
int bits_per_pixel;
int scanline_pad,;
} XPixmapFormatValues;

To obtain the pixmap format information for a given display, use XListPixmapFormats.

XPixmapFormatValues *XListPixmapFormats(display , count return)
Display * display ;
int * count return

display Specifies the connection to the X server.
count_return Returns the number of pixmap formats that are supported by the display.

The XListPixmapFormats function returns an array of XPixmapFormatValues structures that
describe the types of Z format images supported by the specified display. If insufficient memory
is available, XListPixmapFormats returns NULL. To free the allocated storage for the
XPixmapFormatValues structures, use XFree.

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Display Functions Obtaining Information about the Display, Image Formats or Screens

The following lists the C language macros, their corresponding function equivalents that are for
other language bindings, and what data they both return for the specified server and screen.
These are often used by toolkits as well as by simple applications.

ImageByteOrder(display)
int XImageByteOrder(display)
Display * display ;
display Specifies the connection to the X server.

Both specify the required byte order for images for each scanline unit in XY
format (bitmap) or for each pixel value in Z format. The macro or function
can return either LSBFirst or MSBFirst.

BitmapUnit(display)
int XBitmapUnit(display)
Display * display ;
display Specifies the connection to the X server.

Both return the size of a bitmap’s scanline unit in bits. The scanline is calculated in multiples of
this value.

BitmapBitOrder(display)
int XBitmapBitOrder(display)
Display * display ;
display Specifies the connection to the X server.

Within each bitmap unit, the left-most bit in the bitmap as displayed on the screen is either the
least-significant or most-significant bit in the unit. This macro or function can return LSBFirst or
MSBFirst.

BitmapPad(display)
int XBitmapPad(display)
Display * display ;
display Specifies the connection to the X server.
Each scanline must be padded to a multiple of bits returned by this macro or function.
DisplayHeight(display , screen_number)
int XDisplayHeight(display , screen_number)

Display * display ;
int screen_number ;

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host server.

Both return an integer that describes the height of the screen in pixels.

Window Management (X11R5): Xlib - C Language Binding 27
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Obtaining Information about the Display, Image Formats or Screens Display Functions

DisplayHeightMM(display , screen_number)

int XDisplayHeightMM(display , screen_number)
Display * display ;
int screen_number ;

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host server.
Both return the height of the specified screen in millimeters.

DisplayWidth(display , screen_number)

int XDisplayWidth(display , screen_number)

Display * display ;
int screen_number ;

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host server.
Both return the width of the screen in pixels.

DisplayWidthMM(display , screen_number)

int XDisplayWidthMM(display , screen_number)

Display * display ;
int screen_number ;

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host server.

Both return the width of the specified screen in millimeters.

3.2.3 Screen Information Macros

The following lists the C-language macros, their corresponding function equivalents that are for
other language bindings, and what data they both can return. These macros or functions all take
a pointer to the appropriate screen structure.

BlackPixelOfScreen(screen)
unsigned long XBlackPixelOfScreen(screen)
Screen * screen ;
screen Specifies the appropriate Screen structure.
Both return the black pixel value of the specified screen.
WhitePixelOfScreen(screen)
unsigned long XWhitePixelOfScreen(screen)
Screen * screen ;
screen Specifies the appropriate Screen structure.

Both return the white pixel value of the specified screen.

28 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Display Functions Obtaining Information about the Display, Image Formats or Screens

CellsOfScreen(screen)
int XCellsOfScreen(screen)
Screen * screen ;
screen Specifies the appropriate Screen structure.
Both return the number of colormap cells in the default colormap of the specified screen.
DefaultColormapOfScreen(screen)
Colormap XDefaultColormapOfScreen(screen)
Screen * screen ;
screen Specifies the appropriate Screen structure.
Both return the default colormap of the specified screen.
DefaultDepthOfScreen(screen)
int XDefaultDepthOfScreen(screen)
Screen * screen ;
screen Specifies the appropriate Screen structure.
Both return the depth of the root window.
DefaultGCOfScreen(screen)
GC XDefaultGCOfScreen(screen)
Screen * screen ;
screen Specifies the appropriate Screen structure.

Both return a default graphics context (GC) of the specified screen, which has the same depth as
the root window of the screen. The GC must never be freed.

DefaultVisualOfScreen(screen)
Visual *XDefaultVisualOfScreen(screen)
Screen * screen ;
screen Specifies the appropriate Screen structure.

Both return the default visual of the specified screen. For information on visual types, see
Section 4.1.

DoesBackingStore(screen)
int XDoesBackingStore(screen)
Screen * screen ;
screen Specifies the appropriate Screen structure.

Both return a value indicating whether the screen supports backing stores. The value returned
can be one of WhenMapped, NotUseful or Always (see Section 4.2.4).

Window Management (X11R5): Xlib - C Language Binding 29
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Obtaining Information about the Display, Image Formats or Screens Display Functions

DoesSaveUnders(screen)
Bool XDoesSaveUnders(screen)
Screen * screen ;
screen Specifies the appropriate Screen structure.

Both return a Boolean value indicating whether the screen supports save unders. If True, the
screen supports save unders. If False, the screen does not support save unders (see Section 4.2.5).

DisplayOfScreen(screen)
Display *XDisplayOfScreen(screen)
Screen * screen ;
screen Specifies the appropriate Screen structure.
Both return the display of the specified screen.

int XScreenNumberOfScreen(screen)
Screen * screen ;

screen Specifies the appropriate Screen structure.
The XScreenNumberOfScreen function returns the screen index number of the specified screen.
EventMaskOfScreen(screen)
long XEventMaskOfScreen(screen)
Screen * screen ;
screen Specifies the appropriate Screen structure.
Both return the event mask of the root window for the specified screen at connection setup time.
WidthOfScreen(screen)
int XWidthOfScreen(screen)
Screen * screen ;
screen Specifies the appropriate Screen structure.
Both return the width of the specified screen in pixels.
HeightOfScreen(screen)
int XHeightOfScreen(screen)
Screen * screen ;
screen Specifies the appropriate Screen structure.
Both return the height of the specified screen in pixels.
WidthMMOfScreen(screen)
int XWidthMMOfScreen(screen)
Screen * screen ;
screen Specifies the appropriate Screen structure.

Both return the width of the specified screen in millimeters.

30 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Display Functions Obtaining Information about the Display, Image Formats or Screens

HeightMMOfScreen(screen)
int XHeightMMOfScreen(screen)
Screen * screen ;
screen Specifies the appropriate Screen structure.
Both return the height of the specified screen in millimeters.
MaxCmapsOfScreen(screen)
int XMaxCmapsOfScreen(screen)
Screen * screen ;
screen Specifies the appropriate Screen structure.

Both return the maximum number of installed colormaps supported by the specified screen (see
Section 10.3).

MinCmapsOfScreen(screen)
int XMinCmapsOfScreen(screen)
Screen * screen ;
screen Specifies the appropriate Screen structure.

Both return the minimum number of installed colormaps supported by the specified screen (see
Section 10.3).

PlanesOfScreen(screen)
int XPlanesOfScreen(screen)
Screen * screen ;
screen Specifies the appropriate Screen structure.
Both return the depth of the root window.
RootWindowOfScreen(screen)
Window XRootWindowOfScreen(screen)
Screen * screen ;
screen Specifies the appropriate Screen structure.

Both return the root window of the specified screen.

Window Management (X11R5): Xlib - C Language Binding 31
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Generating a NoOperation Protocol Request Display Functions

3.3 Generating a NoOperation Protocol Request
To execute a NoOperation protocol request, use XNoOp.

XNoOp(display)
Display * display ;

display Specifies the connection to the X server.
The XNoOp function sends a NoOperation protocol request to the X server, thereby exercising the
connection.

32 X/Open CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Display Functions Freeing Client-created Data

3.4 Freeing Client-created Data
To free in-memory data that was created by an Xlib function, use XFree.

XFree(data)
void * data ;

data Specifies the data that is to be freed.

The XFree function is a general-purpose Xlib routine that frees the specified data. You must use
it to free any objects that were allocated by Xlib, unless an alternate function is explicitly
specified for the object.

Window Management (X11R5): Xlib - C Language Binding 33
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Closing the Display Display Functions

3.5

34

Closing the Display
To close a display or disconnect from the X server, use XCloseDisplay .

XCloseDisplay(display)

Display * display ;

display Specifies the connection to the X server.
The XCloseDisplay function closes the connection to the X server for the display specified in the
Display structure and destroys all windows, resource IDs (Window, Font, Pixmap, Colormap,
Cursor and GContext), or other resources that the client has created on this display, unless the
close-down mode of the resource has been changed (see XSetCloseDownMode). Therefore, these
windows, resource IDs and other resources should never be referenced again or an error will be

generated. Before exiting, you should call XCloseDisplay explicitly so that any pending errors are
reported as XCloseDisplay performs a final XSync operation.

XCloseDisplay can generate a BadGC error.

Xlib provides a function to permit the resources owned by a client to survive after the client’s
connection is closed. To change a client’s close-down mode, use XSetCloseDownMode.

XSetCloseDownMode(display , close _mode)
Display * display ;
int close_mode ;

display Specifies the connection to the X server.

close_mode Specifies the client close-down mode. You can pass DestroyAll,
RetainPermanent or RetainTemporary.

The XSetCloseDownMode defines what will happen to the client’s resources at connection close.
A connection starts in DestroyAll mode. For information on what happens to the client’s
resources when the close_mode argument is RetainPermanent or RetainTemporary, see Section 3.6.

XSetCloseDownMode can generate a BadValue error.

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Display Functions X Server Connection Close Operations

3.6 X Server Connection Close Operations

When the X server’s connection to a client is closed either by an explicit call to XCloseDisplay or
by a process that exits, the X server performs the following automatic operations:

It disowns all selections owned by the client (see XSetSelectionOwner).

It performs an XUngrabPointer and XUngrabKeyboard if the client has actively grabbed the
pointer or the keyboard.

It performs an XUngrabServer if the client has grabbed the server.
It releases all passive grabs made by the client.

It marks all resources (including colormap entries) allocated by the client either as permanent
or temporary, depending on whether the close-down mode is RetainPermanent or
RetainTemporary. However, this does not prevent other client applications from explicitly
destroying the resources (see XSetCloseDownMode).

When the close-down mode is DestroyAll, the X server destroys all of a client’s resources as
follows:

It examines each window in the client’s save-set to determine if it is an inferior (subwindow)
of a window created by the client. (The save-set is a list of other clients’ windows, which are
referred to as save-set windows.) If so, the X server reparents the save-set window to the
closest ancestor so that the save-set window is not an inferior of a window created by the
client. The reparenting leaves unchanged the absolute coordinates (with respect to the root
window) of the upper-left outer corner of the save-set window.

It performs a MapWindow request on the save-set window if the save-set window is
unmapped. The X server does this even if the save-set window was not an inferior of a
window created by the client.

It destroys all windows created by the client.

It performs the appropriate free request on each non-window resource created by the client
in the server (for example, Font, Pixmap, Cursor, Colormap and GContext).

It frees all colors and colormap entries allocated by a client application.

Additional processing occurs when the last connection to the X server closes. An X server goes
through a cycle of having no connections and having some connections. When the last
connection to the X server closes as a result of a connection closing with the close_mode of
DestroyAll, the X server does the following:

It resets its state as if it had just been started. The X server begins by destroying all lingering
resources from clients that have terminated in RetainPermanent or RetainTemporary mode.

It deletes all but the predefined atom identifiers.
It deletes all properties on all root windows (see Section 5.3).

It resets all device maps and attributes (for example, key click, bell volume and acceleration)
as well as the access control list.

It restores the standard root tiles and cursors.
It restores the default font path.

It restores the input focus to state PointerRoot.

However, the X server does not reset if you close a connection with a close-down mode set to
RetainPermanent or RetainTemporary.

Window Management (X11R5): Xlib - C Language Binding 35
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Display Functions

36 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Chapter 4

Window Functions

In the X Window System, a window is a rectangular area on the screen that lets you view
graphic output. Client applications can display overlapping and nested windows on one or
more screens that are driven by X servers on one or more machines. Clients who want to create
windows must first connect their program to the X server by calling XOpenDisplay. This chapter
begins with a discussion of visual types and window attributes. The chapter continues with a
discussion of the Xlib functions you can use to:

» create windows
« destroy windows
« map windows
« unmap windows
- configure windows
- change the stacking order
- change window attributes.
This chapter also identifies the window actions that may generate events.

Note that it is vital that your application conform to the established conventions for
communicating with window managers for it to work well with the various window managers
in use (see Section 15.1). Toolkits generally adhere to these conventions for you, relieving you of
the burden. Toolkits also often supersede many functions in this chapter with versions of their
own. Refer to the documentation for the toolkit you are using for more information.

Window Management (X11R5): Xlib - C Language Binding 37
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Visual Types Window Functions

4.1

38

Visual Types

On some display hardware, it may be possible to deal with color resources in more than one
way. For example, you may be able to deal with a screen of either 12-bit depth with arbitrary
mapping of pixel to color (pseudo-color) or 24-bit depth with 8 bits of the pixel dedicated to each
of red, green and blue. These different ways of dealing with the visual aspects of the screen are
called visuals. For each screen of the display, there may be a list of valid visual types supported
at different depths of the screen. Because default windows and visual types are defined for each
screen, most simple applications need not deal with this complexity. Xlib provides macros and
functions that return the default root window, the default depth of the default root window, and
the default visual type (see Section 3.2.1 and Section 17.7).

Xlib uses an opaque Visual structure that contains information about the possible color mapping.
The visual utility functions (see Section 17.7) use an XVisuallnfo structure to return this
information to an application. The members of this structure pertinent to this discussion are
class, red_mask, green_mask, blue_mask, bits_per_rgb and colormap_size. The class member
specifies one of the possible visual classes of the screen and can be StaticGray, StaticColor,
TrueColor, GrayScale, PseudoColor or DirectColor.

The following concepts may serve to make the explanation of visual types clearer. The screen
can be color or grayscale, can have a colormap that is writable or read-only, and can also have a
colormap whose indices are decomposed into separate RGB pieces, provided one is not on a
grayscale screen. This leads to the following diagram:

Color GrayScale
R/0 R/W R/0 R/W
Undecomposed | Static Pseudo | Static Gray
Colormap Color Color Gray Scale
Decomposed True Direct
Colormap Color Color

Conceptually, as each pixel is read out of video memory for display on the screen, it goes
through a look-up stage by indexing into a colormap. Colormaps can be manipulated arbitrarily
on some hardware, in limited ways on other hardware, and not at all on other hardware. The
visual types affect the colormap and the RGB values in the following ways:

« For PseudoColor, a pixel value indexes a colormap to produce independent RGB values, and
the RGB values can be changed dynamically.

- GrayScale is treated the same way as PseudoColor except that the primary that drives the
screen is undefined. Thus, the client should always store the same value for red, green and
blue in the colormaps.

- For DirectColor, a pixel value is decomposed into separate RGB subfields, and each subfield
separately indexes the colormap for the corresponding value. The RGB values can be
changed dynamically.

« TrueColor is treated the same way as DirectColor except that the colormap has predefined,
read-only RGB values. These RGB values are server-dependent but provide linear or near-
linear ramps in each primary.

- StaticColor is treated the same way as PseudoColor except that the colormap has predefined,
read-only, server-dependent RGB values.

. StaticGray is treated the same way as StaticColor except that the RGB values are equal for any
single pixel value, thus resulting in shades of gray. StaticGray with a two-entry colormap can
be thought of as monochrome.

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Window Functions Visual Types

The red_mask, green_mask and blue_mask members are only defined for DirectColor and
TrueColor. Each has one contiguous set of bits with no intersections. The bits_per_rgb member
specifies the log base 2 of the number of distinct color values (individually) of red, green and
blue. Actual RGB values are unsigned 16-bit numbers. The colormap_size member defines the
number of available colormap entries in a newly created colormap. For DirectColor and
TrueColor, this is the size of an individual pixel subfield.

To obtain the visual ID from a Visual, use XVisualIDFromVisual .

VisuallD XVisuallDFromVisual(visual)
Visual * visual ;

visual Specifies the visual type.

The XVisualIDFromVisual function returns the visual ID for the specified visual type.

Window Management (X11R5): Xlib - C Language Binding 39
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Window Attributes Window Functions

4.2

40

Window Attributes

All InputOutput windows have a border width of zero or more pixels, an optional background,
an event suppression mask (which suppresses propagation of events from children), and a
property list (see Section 5.3). The window border and background can be a solid color or a
pattern, called a tile. All windows except the root have a parent and are clipped by their parent.
If a window is stacked on top of another window, it obscures that other window for the purpose
of input. If a window has a background (almost all do), it obscures the other window for
purposes of output. Attempts to output to the obscured area do nothing, and no input events
(for example, pointer motion) are generated for the obscured area.

Windows also have associated property lists (see Section 5.3).

Both InputOutput and InputOnly windows have the following common attributes, which are the
only attributes of an InputOnly window:

« win-gravity
. event-mask
« do-not-propagate-mask
- override-redirect
+ Cursor.
If you specify any other attributes for an InputOnly window, a BadMatch error results.

InputOnly windows are used for controlling input events in situations where InputOutput
windows are unnecessary. InputOnly windows are invisible; can only be used to control such
things as cursors, input event generation and grabbing; and cannot be used in any graphics
requests. Note that InputOnly windows cannot have InputOutput windows as inferiors.

Windows have borders of a programmable width and pattern as well as a background pattern or
tile. Pixel values can be used for solid colors. The background and border pixmaps can be
destroyed immediately after creating the window if no further explicit references to them are to
be made. The pattern can either be relative to the parent or absolute. If ParentRelative, the
parent’s background is used.

When windows are first created, they are not visible (not mapped) on the screen. Any output to
a window that is not visible on the screen and that does not have backing store will be
discarded. An application may wish to create a window long before it is mapped to the screen.
When a window is eventually mapped to the screen (using XMapWindow), the X server
generates an Expose event for the window if backing store has not been maintained.

A window manager can override your choice of size, border width and position for a top-level
window. Your program must be prepared to use the actual size and position of the top window.
It is not acceptable for a client application to resize itself unless in direct response to a human
command to do so. Instead, either your program should use the space given to it, or if the space
is too small for any useful work, your program might ask the user to resize the window. The
border of your top-level window is considered fair game for window managers.

To set an attribute of a window, set the appropriate member of the XSetWindowAttributes
structure and OR in the corresponding value bitmask in your subsequent calls to XCreateWindow
and XChangeWindowAttributes, or use one of the other convenience functions that set the
appropriate attribute. The symbols for the value mask bits and the XSetWindowAttributes
structure are:

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Window Functions Window Attributes

/* Window attribute value mask bits */

#define CWBackPixmap (1L<<0)
#define CWBackPixel (1L<<1)
#define CWRBorderPixmap (1L<<2)
#define CWRBorderPixel (1L<<3)
#define CWBItGravity (1L<<4)
#define CWWinGravity (1L<<5)
#define CWBackingStore (1L<<6)
#define CWBackingPlanes (1L<<7)
#define CWRBackingPixel (1L<<8)
#define CWOverrideRedirect (1L<<9)
#define CWSaveUnder (1L<<10)
#define CWEventMask (1L<<11)
#define CWDontPropagate (1L<<12)
#define CWColormap (1L<<13)
#define CWCursor (1L<<14)
/* Values */

typedef struct {
Pixmap background_pixmap; /* background, None or
ParentRelative */
unsigned long background_pixel; /* background pixel */

Pixmap border_pixmap; /* border of the window or
CopyFromParent */

unsigned long border_pixel; /* border pixel value */

int bit_gravity; /* one of bit gravity values */

int win_gravity; [* one of the window gravity
values */

int backing_store; [* NotUseful, WhenMapped, Always */

unsigned long backing_planes; [* planes to be preserved if
possible */

unsigned long backing_pixel; [* value to use in restoring
planes */

Bool save under; /* should bits under be saved?
(popups) */

long event_mask; [* set of events that should
be saved */

long do_not_propagate_mask; /* set of events that should
not propagate */

Bool override_redirect; /* boolean value for
override_redirect */

Colormap colormap; /* color map to be associated
with window */

Cursor cursor; [* cursor to be displayed

(or None) */
} XSetWindowAttributes;

The following lists the defaults for each window attribute and indicates whether the attribute is
applicable to InputOutput and InputOnly windows:

Window Management (X11R5): Xlib - C Language Binding 41
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Window Attributes

421

42

0 1995, X/Open Company Limited.

Window Functions

Attribute Default InputOutput | InputOnly
background-pixmap None Yes No
background-pixel Undefined Yes No
border-pixmap CopyFromParent Yes No
border-pixel Undefined Yes No
bit-gravity ForgetGravity Yes No
win-gravity NorthWestGravity Yes Yes
backing-store NotUseful Yes No
backing-planes All ones Yes No
backing-pixel Zero Yes No
save-under False Yes No
event-mask empty set Yes Yes
do-not-propagate-mask | empty set Yes Yes
override-redirect False Yes Yes
colormap CopyFromParent Yes No
cursor None Yes Yes

Background Attribute

Only InputOutput windows can have a background. You can set the background of an
InputOutput window by using a pixel or a pixmap.

The background-pixmap attribute of a window specifies the pixmap to be used for a window’s
background. This pixmap can be of any size, although some sizes may be faster than others.
The background-pixel attribute of a window specifies a pixel value used to paint a window's
background in a single color.

You can set the background-pixmap to a pixmap, None (default), or ParentRelative. You can set
the background-pixel of a window to any pixel value (no default). If you specify a background-
pixel, it overrides either the default background-pixmap or any value you may have set in the
background-pixmap. A pixmap of an undefined size that is filled with the background-pixel is
used for the background. Range checking is not performed on the background pixel; it simply is
truncated to the appropriate number of bits.

If you set the background-pixmap, it overrides the default. The background-pixmap and the
window must have the same depth, or a BadMatch error results. If you set background-pixmap
to None, the window has no defined background. If you set the background-pixmap to
ParentRelative:

« The parent window's background-pixmap is used. The child window, however, must have
the same depth as its parent, or a BadMatch error results.

- If the parent window has a background-pixmap of None, the window also has a
background-pixmap of None.

« A copy of the parent window’s background-pixmap is hot made. The parent’s background-
pixmap is examined each time the child window’s background-pixmap is required.

- The background tile origin always aligns with the parent window’s background tile origin. If
the background-pixmap is not ParentRelative, the background tile origin is the child window’s
origin.

Setting a new background, whether by setting background-pixmap or background-pixel,
overrides any previous background. The background-pixmap can be freed immediately if no
further explicit reference is made to it (the X server will keep a copy to use when needed). If you
later draw into the pixmap used for the background, what happens is undefined because the X

X/0pen CAE Specification
Stamp: X XXX XXXXXX XX XXX X XXX XXXXX

Window Functions Window Attributes

422

423

implementation is free to make a copy of the pixmap or to use the same pixmap.

When no valid contents are available for regions of a window and either the regions are visible
or the server is maintaining backing store, the server automatically tiles the regions with the
window’s background unless the window has a background of None. If the background is None,
the previous screen contents from other windows of the same depth as the window are simply
left in place as long as the contents come from the parent of the window or an inferior of the
parent. Otherwise, the initial contents of the exposed regions are undefined. Expose events are
then generated for the regions, even if the background-pixmap is None (see Section 11.9).

Border Attribute

Only InputOutput windows can have a border. You can set the border of an InputOutput window
by using a pixel or a pixmap.

The border-pixmap attribute of a window specifies the pixmap to be used for a window’s border.
The border-pixel attribute of a window specifies a pixmap of undefined size filled with that pixel
be used for a window's border. Range checking is not performed on the background pixel; it
simply is truncated to the appropriate number of bits. The border tile origin is always the same
as the background tile origin.

You can also set the border-pixmap to a pixmap of any size (some may be faster than others) or
to CopyFromParent (default). You can set the border-pixel to any pixel value (no default).

If you set a border-pixmap, it overrides the default. The border-pixmap and the window must
have the same depth, or a BadMatch error results. If you set the border-pixmap to
CopyFromParent, the parent window's border-pixmap is copied. Subsequent changes to the
parent window’s border attribute do not affect the child window. However, the child window
must have the same depth as the parent window, or a BadMatch error results.

The border-pixmap can be freed immediately if no further explicit reference is made to it. If you
later draw into the pixmap used for the border, what happens is undefined because the X
implementation is free either to make a copy of the pixmap or to use the same pixmap. If you
specify a border-pixel, it overrides either the default border-pixmap or any value you may have
set in the border-pixmap. All pixels in the window's border will be set to the border-pixel.
Setting a new border, whether by setting border-pixel or by setting border-pixmap, overrides
any previous border.

Output to a window is always clipped to the inside of the window. Therefore, graphics
operations never affect the window border.

Gravity Attributes

The bit gravity of a window defines which region of the window should be retained when an
InputOutput window is resized. The default value for the bit-gravity attribute is ForgetGravity.
The window gravity of a window allows you to define how the InputOutput or InputOnly
window should be repositioned if its parent is resized. The default value for the win-gravity
attribute is NorthWestGravity.

If the inside width or height of a window is not changed and if the window is moved or its
border is changed, then the contents of the window are not lost but move with the window.
Changing the inside width or height of the window causes its contents to be moved or lost
(depending on the bit-gravity of the window) and causes children to be reconfigured (depending
on their win-gravity). For a change of width and height, the (x, y) pairs are defined:

Window Management (X11R5): Xlib - C Language Binding 43
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Window Attributes Window Functions

424

44

Gravity Direction Coordinates
NorthWestGravity | (0, 0)

NorthGravity (Width/2, 0)
NorthEastGravity (Width, 0)
WestGravity (0, Height/2)
CenterGravity (Width/2, Height/2)
EastGravity (Width, Height/2)
SouthWestGravity | (0, Height)
SouthGravity (Width/2, Height)
SouthEastGravity (Width, Height)

When a window with one of these bit-gravity values is resized, the corresponding pair defines
the change in position of each pixel in the window. When a window with one of these win-
gravities has its parent window resized, the corresponding pair defines the change in position of
the window within the parent. When a window is so repositioned, a GravityNotify event is
generated (see Section 11.10.5).

A bit-gravity of StaticGravity indicates that the contents or origin should not move relative to the
origin of the root window. If the change in size of the window is coupled with a change in
position (X, y), then for bit-gravity the change in position of each pixel is (=X, -y), and for win-
gravity the change in position of a child when its parent is so resized is (=X, —y). Note that
StaticGravity still only takes effect when the width or height of the window is changed, not when
the window is moved.

A bit-gravity of ForgetGravity indicates that the window’s contents are always discarded after a
size change, even if a backing store or save under has been requested. The window is tiled with
its background and zero or more Expose events are generated. If no background is defined, the
existing screen contents are not altered. Some X servers may also ignore the specified bit-gravity
and always generate Expose events.

The contents and borders of inferiors are not affected by their parent’s bit-gravity. A server is
permitted to ignore the specified bit-gravity and use Forget instead.

A win-gravity of UnmapGravity is like NorthWestGravity (the window is not moved), except the
child is also unmapped when the parent is resized, and an UnmapNotify event is generated.

Backing Store Attribute

Some implementations of the X server may choose to maintain the contents of InputOutput
windows. If the X server maintains the contents of a window, the off-screen saved pixels are
known as backing store. The backing store advises the X server on what to do with the contents
of a window. The backing-store attribute can be set to NotUseful (default), WhenMapped, or
Always.

A backing-store attribute of NotUseful advises the X server that maintaining contents is
unnecessary, although some X implementations may still choose to maintain contents and,
therefore, not generate Expose events. A backing-store attribute of WhenMapped advises the X
server that maintaining contents of obscured regions when the window is mapped would be
beneficial. In this case, the server may generate an Expose event when the window is created. A
backing-store attribute of Always advises the X server that maintaining contents even when the
window is unmapped would be beneficial. Even if the window is larger than its parent, this is a
request to the X server to maintain complete contents, not just the region within the parent
window boundaries. While the X server maintains the window's contents, Expose events
normally are not generated, but the X server may stop maintaining contents at any time.

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Window Functions Window Attributes

425

4.2.6

4.2.7

4.2.8

When the contents of obscured regions of a window are being maintained, regions obscured by
noninferior windows are included in the destination of graphics requests (and source, when the
window is the source). However, regions obscured by inferior windows are not included.

Save Under Flag

Some server implementations may preserve contents of InputOutput windows under other
InputOutput windows. This is not the same as preserving the contents of a window for you. You
may get better visual appeal if transient windows (for example, pop-up menus) request that the
system preserve the screen contents under them, so the temporarily obscured applications do
not have to repaint.

You can set the save-under flag to True or False (default). If save-under is True, the X server is
advised that, when this window is mapped, saving the contents of windows it obscures would
be beneficial.

Backing Planes and Backing Pixel Attributes

You can set backing planes to indicate (with bits set to 1) which bit planes of an InputOutput
window hold dynamic data that must be preserved in backing store and during save unders.
The default value for the backing-planes attribute is all bits set to 1. You can set backing pixel to
specify what bits to use in planes not covered by backing planes. The default value for the
backing-pixel attribute is all bits set to 0. The X server is free to save only the specified bit planes
in the backing store or the save under and is free to regenerate the remaining planes with the
specified pixel value. Any extraneous bits in these values (that is, those bits beyond the specified
depth of the window) may be simply ignored. If you request backing store or save unders, you
should use these members to minimize the amount of off-screen memory required to store your
window.

Event Mask and Do Not Propagate Mask Attributes

The event mask defines which events the client is interested in for this InputOutput or InputOnly
window (or, for some event types, inferiors of this window). The event mask is the bitwise
inclusive OR of zero or more of the valid event mask bits. You can specify that no maskable
events are reported by setting NoEventMask (default).

The do-not-propagate-mask attribute defines which events should not be propagated to ancestor
windows when no client has the event type selected in this InputOutput or InputOnly window.
The do-not-propagate-mask is the bitwise inclusive OR of zero or more of the following masks:
KeyPress, KeyRelease, ButtonPress, ButtonRelease, PointerMotion, ButtonlMotion, Button2Motion,
Button3Motion, Button4Motion, Button5Motion and ButtonMotion. You can specify that all events
are propagated by setting NoEventMask (default).

Override Redirect Flag

To control window placement or to add decoration, a window manager often needs to intercept
(redirect) any map or configure request. Pop-up windows, however, often need to be mapped
without a window manager getting in the way. To control whether an InputOutput or InputOnly
window is to ignore these structure control facilities, use the override-redirect flag.

The override-redirect flag specifies whether map and configure requests on this window should
override a SubstructureRedirectMask on the parent. You can set the override-redirect flag to True
or False (default). Window managers use this information to avoid tampering with pop-up
windows (see also Chapter 15).

Window Management (X11R5): Xlib - C Language Binding 45
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Window Attributes Window Functions

4.2.9

4.2.10

46

Colormap Attribute

The colormap attribute specifies which colormap best reflects the true colors of the InputOutput
window. The colormap must have the same visual type as the window, or a BadMatch error
results. X servers capable of supporting multiple hardware colormaps can use this information,
and window managers can use it for calls to XlnstallColormap. You can set the colormap
attribute to a colormap or to CopyFromParent (default).

If you set the colormap to CopyFromParent, the parent window’s colormap is copied and used by
its child. However, the child window must have the same visual type as the parent, or a
BadMatch error results. The parent window must not have a colormap of None, or a BadMatch
error results. The colormap is copied by sharing the colormap object between the child and
parent, not by making a complete copy of the colormap contents. Subsequent changes to the
parent window’s colormap attribute do not affect the child window.

Cursor Attribute

The cursor attribute specifies which cursor is to be used when the pointer is in the InputOutput
or InputOnly window. You can set the cursor to a cursor or None (default).

If you set the cursor to None, the parent’s cursor is used when the pointer is in the InputOutput or
InputOnly window, and any change in the parent’s cursor will cause an immediate change in the
displayed cursor. By calling XFreeCursor, the cursor can be freed immediately as long as no
further explicit reference to it is made.

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Window Functions Creating Windows

4.3 Creating Windows

Xlib provides basic ways for creating windows, and toolkits often supply higher-level functions
specifically for creating and placing top-level windows, which are discussed in the appropriate
toolkit documentation. If you do not use a toolkit, however, you must provide some standard
information or hints for the window manager by using the Xlib inter-client communication
functions (see Chapter 15).

If you use Xlib to create your own top-level windows (direct children of the root window), you
must observe the following rules so that all applications interact reasonably across the different
styles of window management;

« You must never fight with the window manager for the size or placement of your top-level
window.

« You must be able to deal with whatever size window you get, even if this means that your
application just prints a message like ‘‘Please make me bigger’ in its window.

« You should only attempt to resize or move top-level windows in direct response to a user
request. If a request to change the size of a top-level window fails, you must be prepared to
live with what you get. You are free to resize or move the children of top-level windows as
necessary. (Toolkits often have facilities for automatic relayout.)

- If you do not use a toolkit that automatically sets standard window properties, you should
set these properties for top-level windows before mapping them.

For further information, see Chapter 15 and the ICCCM specification.
XCreateWindow is the more general function that allows you to set specific window attributes
when you create a window. XCreateSimpleWindow creates a window that inherits its attributes
from its parent window.
The X server acts as if InputOnly windows do not exist for the purposes of graphics requests,
exposure processing and VisibilityNotify events. An InputOnly window cannot be used as a
drawable (that is, as a source or destination for graphics requests). InputOnly and InputOutput
windows act identically in other respects (properties, grabs, input control, and so on). Extension
packages can define other classes of windows.
To create an unmapped window and set its window attributes, use XCreateWindow.
Window XCreateWindow(display , parent , X, VY,
width , height , border width , depth ,
class , visual , valuemask , attributes)

Display * display ;

Window parent ;

int X, y;

unsigned int width , height ;

unsigned int border_width

int depth ;

unsigned int class ;

Visual * visual

unsigned long valuemask ;

XSetWindowAttributes * attributes ;
display Specifies the connection to the X server.
parent Specifies the parent window.

Window Management (X11R5): Xlib - C Language Binding 47

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Creating Windows Window Functions

X

y Specify the x and y coordinates, which are the top-left outside corner of the
created window’s borders and are relative to the inside of the parent window’s
borders.

width

height Specify the width and height, which are the created window’s inside
dimensions and do not include the created window’s borders. The dimensions
must be non-zero, or a BadValue error results.

border_width Specifies the width of the created window's border in pixels.

depth Specifies the window’s depth. A depth of CopyFromParent means the depth is
taken from the parent.

class Specifies the created window's class. You can pass InputOutput, InputOnly or
CopyFromParent. A class of CopyFromParent means the class is taken from the
parent.

visual Specifies the visual type. A visual of CopyFromParent means the visual type is
taken from the parent.

valuemask Specifies which window attributes are defined in the attributes argument.
This mask is the bitwise inclusive OR of the valid attribute mask bits. If
valuemask is zero, the attributes are ignored and are not referenced.

attributes Specifies the structure from which the values (as specified by the value mask)

are to be taken. The value mask should have the appropriate bits set to
indicate which attributes have been set in the structure.

The XCreateWindow function creates an unmapped subwindow for a specified parent window,
returns the window ID of the created window, and causes the X server to generate a CreateNotify
event. The created window is placed on top in the stacking order with respect to siblings.

The coordinate system has the X axis horizontal and the Y axis vertical, with the origin [0, 0] at
the upper left. Coordinates are integral, in terms of pixels, and coincide with pixel centers. Each
window and pixmap has its own coordinate system. For a window, the origin is inside the
border at the inside upper left.

The border_width for an InputOnly window must be zero, or a BadMatch error results. For class
InputOutput, the visual type and depth must be a combination supported for the screen, or a
BadMatch error results. The depth need not be the same as the parent, but the parent must not be
a window of class InputOnly, or a BadMatch error results. For an InputOnly window, the depth
must be zero, and the visual must be one supported by the screen. If either condition is not met,
a BadMatch error results. The parent window, however, may have any depth and class. If you
specify any invalid window attribute for a window, a BadMatch error results.

The created window is not yet displayed (mapped) on the user’'s display. To display the
window, call XMapWindow. The new window initially uses the same cursor as its parent. A
new cursor can be defined for the new window by calling XDefineCursor. The window will not
be visible on the screen unless it and all of its ancestors are mapped and it is not obscured by any
of its ancestors.

XCreateWindow can generate BadAlloc, BadColor, BadCursor, BadMatch, BadPixmap, BadValue and
BadWindow errors.

To create an unmapped InputOutput subwindow of a given parent window, use
XCreateSimpleWindow.

48 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Window Functions

Window XCreateSimpleWindow(display ,

y, width , height , border _width
border , background)

Display * display ;

Window parent ;

int X, y;

unsigned int width , height ;

unsigned int border_width ;

unsigned long border ;

unsigned long background ;

display
parent

X
y

width
height

border_width

border

background

Specifies the connection to the X server.

Specifies the parent window.

parent ,

Creating Windows

X!

Specify the x and y coordinates, which are the top-left outside corner of the
new window’s borders and are relative to the inside of the parent window's

borders.

Specify the width and height, which are the created window's inside
dimensions and do not include the created window’s borders. The dimensions
must be non-zero, or a BadValue error results.

Specifies the width of the created window's border in pixels.

Specifies the border pixel value of the window.

Specifies the background pixel value of the window.

The XCreateSimpleWindow function creates an unmapped InputOutput subwindow for a specified
parent window, returns the window ID of the created window, and causes the X server to
generate a CreateNotify event. The created window is placed on top in the stacking order with
respect to siblings. Any part of the window that extends outside its parent window is clipped.
The border_width for an InputOnly window must be zero, or a BadMatch error results.
XCreateSimpleWindow inherits its depth, class and visual from its parent. All other window
attributes, except background and border, have their default values.

XCreateSimpleWindow can generate BadAlloc, BadMatch, BadValue and BadWindow errors.

Window Management (X11R5): Xlib - C Language Binding
0 1995, X/Open Company Limited.

49
Stamp:XXXXXXXXX XX XXX XXXXXX XXX

Destroying Windows Window Functions

4.4

50

Destroying Windows

Xlib provides functions that you can use to destroy a window or destroy all subwindows of a
window.

To destroy a window and all of its subwindows, use XDestroyWindow.

XDestroyWindow(display , w)
Display * display ;

Window w
display Specifies the connection to the X server.
w Specifies the window.

The XDestroyWindow function destroys the specified window as well as all of its subwindows
and causes the X server to generate a DestroyNotify event for each window. The window should
never be referenced again. If the window specified by the w argument is mapped, it is
unmapped automatically. The ordering of the DestroyNotify events is such that for any given
window being destroyed, DestroyNotify is generated on any inferiors of the window before being
generated on the window itself. The ordering among siblings and across subhierarchies is not
otherwise constrained. If the window you specified is a root window, no windows are
destroyed. Destroying a mapped window will generate Expose events on other windows that
were obscured by the window being destroyed.

XDestroyWindow can generate a BadWindow error.
To destroy all subwindows of a specified window, use XDestroySubwindows.

XDestroySubwindows(display , w)
Display * display ;

Window w
display Specifies the connection to the X server.
w Specifies the window.

The XDestroySubwindows function destroys all inferior windows of the specified window, in
bottom-to-top stacking order. It causes the X server to generate a DestroyNotify event for each
window. If any mapped subwindows were actually destroyed, XDestroySubwindows causes the
X server to generate Expose events on the specified window. This is much more efficient than
deleting many windows one at a time because much of the work need be performed only once
for all of the windows, rather than for each window. The subwindows should never be
referenced again.

XDestroySubwindows can generate a BadWindow error.

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Window Functions Mapping Windows

4.5

Mapping Windows

A window is considered mapped if an XMapWindow call has been made on it. It may not be
visible on the screen for one of the following reasons:

- Itis obscured by another opaque window.
« One of its ancestors is not mapped.
- Itisentirely clipped by an ancestor.

Expose events are generated for the window when part or all of it becomes visible on the screen.
A client receives the Expose events only if it has asked for them. Windows retain their position in
the stacking order when they are unmapped.

A window manager may want to control the placement of subwindows. If
SubstructureRedirectMask has been selected by a window manager on a parent window (usually a
root window), a map request initiated by other clients on a child window is not performed, and
the window manager is sent a MapRequest event. However, if the override-redirect flag on the
child had been set to True (usually only on pop-up menus), the map request is performed.

A tiling window manager might decide to reposition and resize other clients’ windows and then
decide to map the window to its final location. A window manager that wants to provide
decoration might reparent the child into a frame first. For further information, see Section 4.2.8
and Section 11.10. Only a single client at a time can select for SubstructureRedirectMask.

Similarly, a single client can select for ResizeRedirectMask on a parent window. Then, any
attempt to resize the window by another client is suppressed, and the client receives a
ResizeRequest event.

To map a given window, use XMapWindow.

XMapWindow(display , w)
Display * display ;
Window w

display Specifies the connection to the X server.
w Specifies the window.

The XMapWindow function maps the window and all of its subwindows that have had map
requests. Mapping a window that has an unmapped ancestor does not display the window but
marks it as eligible for display when the ancestor becomes mapped. Such a window is called
unviewable. When all its ancestors are mapped, the window becomes viewable and will be
visible on the screen if it is not obscured by another window. This function has no effect if the
window is already mapped.

If the override-redirect of the window is False and if some other client has selected
SubstructureRedirectMask on the parent window, then the X server generates a MapRequest event,
and the XMapWindow function does not map the window. Otherwise, the window is mapped,
and the X server generates a MapNotify event.

If the window becomes viewable and no earlier contents for it are remembered, the X server tiles
the window with its background. If the window’s background is undefined, the existing screen
contents are not altered, and the X server generates zero or more Expose events. If backing-store
was maintained while the window was unmapped, no Expose events are generated. If backing-
store will now be maintained, a full-window exposure is always generated. Otherwise, only
visible regions may be reported. Similar tiling and exposure take place for any newly viewable
inferiors.

Window Management (X11R5): Xlib - C Language Binding 51
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Mapping Windows Window Functions

If the window is an InputOutput window, XMapWindow generates Expose events on each
InputOutput window that it causes to be displayed. If the client maps and paints the window
and if the client begins processing events, the window is painted twice. To avoid this, first ask
for Expose events and then map the window, so the client processes input events as usual. The
event list will include Expose for each window that has appeared on the screen. The client’s
normal response to an Expose event should be to repaint the window. This method usually leads
to simpler programs and to proper interaction with window managers.

XMapWindow can generate a BadWindow error.
To map and raise a window, use XMapRaised.

XMapRaised(display , w)
Display * display ;

Window w
display Specifies the connection to the X server.
w Specifies the window.

The XMapRaised function essentially is similar to XMapWindow in that it maps the window and
all of its subwindows that have had map requests. However, it also raises the specified window
to the top of the stack. For additional information, see XMapWindow.

XMapRaised can generate multiple BadWindow errors.
To map all subwindows for a specified window, use XMapSubwindows.

XMapSubwindows(display , w)
Display * display ;

Window w
display Specifies the connection to the X server.
w Specifies the window.

The XMapSubwindows function maps all subwindows for a specified window in top-to-bottom
stacking order. The X server generates Expose events on each newly displayed window. This
may be much more efficient than mapping many windows one at a time because the server
needs to perform much of the work only once, for all of the windows, rather than for each
window.

XMapSubwindows can generate a BadWindow error.

52 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Window Functions Unmapping Windows

4.6 Unmapping Windows
Xlib provides functions that you can use to unmap a window or all subwindows.
To unmap a window, use XUnmapWindow.
XUnmapWindow(display , w)
Display * display ;
Window w
display Specifies the connection to the X server.
w Specifies the window.
The XUnmapWindow function unmaps the specified window and causes the X server to generate
an UnmapNotify event. If the specified window is already unmapped, XUnmapWindow has no
effect. Normal exposure processing on formerly obscured windows is performed. Any child
window will no longer be visible until another map call is made on the parent. In other words,
the subwindows are still mapped but are not visible until the parent is mapped. Unmapping a
window will generate Expose events on windows that were formerly obscured by it.
XUnmapWindow can generate a BadWindow error.
To unmap all subwindows for a specified window, use XUnmapSubwindows.
XUnmapSubwindows(display , w)
Display * display ;
Window w
display Specifies the connection to the X server.
w Specifies the window.
The XUnmapSubwindows function unmaps all subwindows for the specified window in bottom-
to-top stacking order. It causes the X server to generate an UnmapNotify event on each
subwindow and Expose events on formerly obscured windows. Using this function is much
more efficient than unmapping multiple windows one at a time because the server needs to
perform much of the work only once, for all of the windows, rather than for each window.
XUnmapSubwindows can generate a BadWindow error.
Window Management (X11R5): Xlib - C Language Binding 53

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Configuring Windows Window Functions

4.7 Configuring Windows

Xlib provides functions that you can use to move a window, resize a window, move and resize a
window, or change a window's border width. To change one of these parameters, set the
appropriate member of the XWindowChanges structure and OR in the corresponding value mask
in subsequent calls to XConfigureWindow. The symbols for the value mask bits and the
XWindowChanges structure are:

[* Configure window value mask bits */

#define CWX (1<<0)
#define CWYy (1<<1)
#define CWWidth (1<<2)
#define CWHeight (1<<3)
#define CWBorderWidth (1<<4)
#define CWSibling (1<<b)
#define CWStackMode (1<<6)
/* Values */

typedef struct {
int x, vy;
int width, height;
int border_width;
Window sibling;
int stack_mode;
} XWindowChanges;

The x and y members are used to set the window’s x and y coordinates, which are relative to the
parent’s origin and indicate the position of the upper-left outer corner of the window. The width
and height members are used to set the inside size of the window, not including the border, and
must be non-zero, or a BadValue error results. Attempts to configure a root window have no
effect.

The border_width member is used to set the width of the border in pixels. Note that setting just
the border width leaves the outer-left corner of the window in a fixed position but moves the
absolute position of the window’s origin. If you attempt to set the border-width attribute of an
InputOnly window non-zero, a BadMatch error results.

The sibling member is used to set the sibling window for stacking operations. The stack_mode
member is used to set how the window is to be restacked and can be set to Above, Below, Toplf,
BottomlIf or Opposite.

If the override-redirect flag of the window is False and if some other client has selected
SubstructureRedirectMask on the parent, the X server generates a ConfigureRequest event, and no
further processing is performed. Otherwise, if some other client has selected ResizeRedirectMask
on the window and the inside width or height of the window is being changed, a ResizeRequest
event is generated, and the current inside width and height are used instead. Note that the
override-redirect flag of the window has no effect on ResizeRedirectMask and that
SubstructureRedirectMask on the parent has precedence over ResizeRedirectMask on the window.

When the geometry of the window is changed as specified, the window is restacked among
siblings, and a ConfigureNotify event is generated if the state of the window actually changes.
GravityNotify events are generated after ConfigureNotify events. If the inside width or height of
the window has actually changed, children of the window are affected as specified.

54 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Window Functions Configuring Windows

If a window's size actually changes, the window’s subwindows move according to their window
gravity. Depending on the window’s bit gravity, the contents of the window also may be moved
(see Section 4.2.3).

If regions of the window were obscured but now are not, exposure processing is performed on
these formerly obscured windows, including the window itself and its inferiors. As a result of
increasing the width or height, exposure processing is also performed on any new regions of the
window and any regions where window contents are lost.

The restack check (specifically, the computation for BottomlIf, Toplf and Opposite) is performed
with respect to the window's final size and position (as controlled by the other arguments of the
request), not its initial position. If a sibling is specified without a stack_mode, a BadMatch error
results.

If a sibling and a stack_mode are specified, the window is restacked as follows:

Above The window is placed just above the sibling.

Below The window is placed just below the sibling.

Toplf If the sibling occludes the window, the window is placed at the top of the
stack.

Bottomlf If the window occludes the sibling, the window is placed at the bottom of the
stack.

Opposite If the sibling occludes the window, the window is placed at the top of the
stack. If the window occludes the sibling, the window is placed at the bottom
of the stack.

If a stack_mode is specified but no sibling is specified, the window is restacked as follows:

Above The window is placed at the top of the stack.

Below The window is placed at the bottom of the stack.

Toplf If any sibling occludes the window, the window is placed at the top of the
stack.

Bottomlf If the window occludes any sibling, the window is placed at the bottom of the
stack.

Opposite If any sibling occludes the window, the window is placed at the top of the
stack. If the window occludes any sibling, the window is placed at the bottom
of the stack.

Attempts to configure a root window have no effect.
To configure a window's size, location, stacking or border, use XConfigureWindow.

XConfigureWindow(display , w value mask , values)
Display * display ;
Window w
unsigned int value_mask ;
XWindowChanges * values ;

display Specifies the connection to the X server.
w Specifies the window to be reconfigured.
value_mask Specifies which values are to be set using information in the values structure.

This mask is the bitwise inclusive OR of the valid configure window values

Window Management (X11R5): Xlib - C Language Binding 55
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Configuring Windows Window Functions

56

bits.
values Specifies the XWindowChanges structure.

The XConfigureWindow function uses the values specified in the XWindowChanges structure to
reconfigure a window's size, position, border and stacking order. Values not specified are taken
from the existing geometry of the window.

If a sibling is specified without a stack_mode or if the window is not actually a sibling, a
BadMatch error results. Note that the computations for Bottomlf, Toplf and Opposite are
performed with respect to the window’s final geometry (as controlled by the other arguments
passed to XConfigureWindow), not its initial geometry. Any backing store contents of the
window, its inferiors, and other newly visible windows are either discarded or changed to reflect
the current screen contents (depending on the implementation).

XConfigureWindow can generate BadMatch, BadValue and BadWindow errors.
To move a window without changing its size, use XMoveWindow.

XMoveWindow(display , w, X, ¥)
Display * display ;

Window w
int X, y;
display Specifies the connection to the X server.
w Specifies the window to be moved.
X
y Specify the x and y coordinates, which define the new location of the top-left

pixel of the window’s border or the window itself if it has no border.

The XMoveWindow function moves the specified window to the specified x and y coordinates,
but it does not change the window's size, raise the window, or change the mapping state of the
window. Moving a mapped window may or may not lose the window’s contents depending on
if the window is obscured by nonchildren and if no backing store exists. If the contents of the
window are lost, the X server generates Expose events. Moving a mapped window generates
Expose events on any formerly obscured windows.

If the override-redirect flag of the window is False and some other client has selected
SubstructureRedirectMask on the parent, the X server generates a ConfigureRequest event, and no
further processing is performed. Otherwise, the window is moved.

XMoveWindow can generate a BadWindow error.
To change a window's size without changing the upper-left coordinate, use XResizeWindow.

XResizeWindow(display , w width , height)
Display * display ;
Window w
unsigned int width , height ;

display Specifies the connection to the X server.

w Specifies the window.

width

height Specify the width and height, which are the interior dimensions of the

window after the call completes.

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Window Functions Configuring Windows

The XResizeWindow function changes the inside dimensions of the specified window, not
including its borders. This function does not change the window’s upper-left coordinate or the
origin and does not restack the window. Changing the size of a mapped window may lose its
contents and generate Expose events. If a mapped window is made smaller, changing its size
generates Expose events on windows that the mapped window formerly obscured.

If the override-redirect flag of the window is False and some other client has selected
SubstructureRedirectMask on the parent, the X server generates a ConfigureRequest event, and no
further processing is performed. If either width or height is zero, a BadValue error results.

XResizeWindow can generate BadValue and BadWindow errors.
To change the size and location of a window, use XMoveResizeWindow.

XMoveResizeWindow(display , w, X, V,
width , height)
Display * display ;

Window w
int X, y;
unsigned int width , height ;
display Specifies the connection to the X server.
w Specifies the window to be reconfigured.
X
y Specify the x and y coordinates, which define the new position of the window
relative to its parent.
width
height Specify the width and height, which define the interior size of the window.

The XMoveResizeWindow function changes the size and location of the specified window without
raising it. Moving and resizing a mapped window may generate an Expose event on the
window. Depending on the new size and location parameters, moving and resizing a window
may generate Expose events on windows that the window formerly obscured.

If the override-redirect flag of the window is False and some other client has selected
SubstructureRedirectMask on the parent, the X server generates a ConfigureRequest event, and no
further processing is performed. Otherwise, the window size and location are changed.

XMoveResizeWindow can generate BadValue and BadWindow errors.
To change the border width of a given window, use XSetWindowBorderWidth.

XSetWindowBorderWidth(display , w width)
Display * display ;
Window w
unsigned int width ;

display Specifies the connection to the X server.
w Specifies the window.
width Specifies the width of the window border.

The XSetWindowBorderWidth function sets the specified window’s border width to the specified
width.

XSetWindowBorderWidth can generate a BadWindow error.

Window Management (X11R5): Xlib - C Language Binding 57
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Changing Window Stacking Order Window Functions

4.8

58

Changing Window Stacking Order
Xlib provides functions that you can use to raise, lower, circulate or restack windows.
To raise a window so that no sibling window obscures it, use XRaiseWindow.

XRaiseWindow(display , w)
Display * display ;

Window w
display Specifies the connection to the X server.
w Specifies the window.

The XRaiseWindow function raises the specified window to the top of the stack so that no sibling
window obscures it. If the windows are regarded as overlapping sheets of paper stacked on a
desk, then raising a window is analogous to moving the sheet to the top of the stack but leaving
its x and y location on the desk constant. Raising a mapped window may generate Expose events
for the window and any mapped subwindows that were formerly obscured.

If the override-redirect attribute of the window is False and some other client has selected
SubstructureRedirectMask on the parent, the X server generates a ConfigureRequest event, and no
processing is performed. Otherwise, the window is raised.

XRaiseWindow can generate a BadWindow error.
To lower a window so that it does not obscure any sibling windows, use XLowerWindow.

XLowerWindow(display , w)
Display * display ;

Window w
display Specifies the connection to the X server.
w Specifies the window.

The XLowerWindow function lowers the specified window to the bottom of the stack so that it
does not obscure any sibling windows. If the windows are regarded as overlapping sheets of
paper stacked on a desk, then lowering a window is analogous to moving the sheet to the
bottom of the stack but leaving its x and y location on the desk constant. Lowering a mapped
window will generate Expose events on any windows it formerly obscured.

If the override-redirect attribute of the window is False and some other client has selected
SubstructureRedirectMask on the parent, the X server generates a ConfigureRequest event, and no
processing is performed. Otherwise, the window is lowered to the bottom of the stack.

XLowerWindow can generate a BadWindow error.
To circulate a subwindow up or down, use XCirculateSubwindows.

XCirculateSubwindows(display , w direction)
Display * display ;
Window w
int direction

display Specifies the connection to the X server.
w Specifies the window.
direction Specifies the direction (up or down) that you want to circulate the window.

You can pass RaiseLowest or LowerHighest.

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Window Functions Changing Window Stacking Order

The XCirculateSubwindows function circulates children of the specified window in the specified
direction. If you specify RaiseLowest, XCirculateSubwindows raises the lowest mapped child (if
any) that is occluded by another child to the top of the stack. If you specify LowerHighest,
XCirculateSubwindows lowers the highest mapped child (if any) that occludes another child to the
bottom of the stack. Exposure processing is then performed on formerly obscured windows. If
some other client has selected SubstructureRedirectMask on the window, the X server generates a
CirculateRequest event, and no further processing is performed. If a child is actually restacked,
the X server generates a CirculateNotify event.

XCirculateSubwindows can generate BadValue and BadWindow errors.

To raise the lowest mapped child of a window that is partially or completely occluded by
another child, use XCirculateSubwindowsUp.

XCirculateSubwindowsUp(display , w
Display * display ;

Window w
display Specifies the connection to the X server.
w Specifies the window.

The XCirculateSubwindowsUp function raises the lowest mapped child of the specified window
that is partially or completely occluded by another child. Completely unobscured children are
not affected. This is a convenience function equivalent to XCirculateSubwindows with RaiseL.owest
specified.

XCirculateSubwindowsUp can generate a BadWindow error.

To lower the highest mapped child of a window that partially or completely occludes another
child, use XCirculateSubwindowsDown.

XCirculateSubwindowsDown(display , w
Display * display ;

Window w
display Specifies the connection to the X server.
w Specifies the window.

The XCirculateSubwindowsDown function lowers the highest mapped child of the specified
window that partially or completely occludes another child. Completely unobscured children
are not affected. This is a convenience function equivalent to XCirculateSubwindows with
LowerHighest specified.

XCirculateSubwindowsDown can generate a BadWindow error.
To restack a set of windows from top to bottom, use XRestackWindows.

XRestackWindows(display , windows , nwindows);
Display * display ;
Window windows [];
int nwindows ;

display Specifies the connection to the X server.
windows Specifies an array containing the windows to be restacked.
nwindows Specifies the number of windows to be restacked.

The XRestackWindows function restacks the windows in the order specified, from top to bottom.
The stacking order of the first window in the windows array is unaffected, but the other

Window Management (X11R5): Xlib - C Language Binding 59
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Changing Window Stacking Order Window Functions

windows in the array are stacked underneath the first window, in the order of the array. The
stacking order of the other windows is not affected. For each window in the window array that
is not a child of the specified window, a BadMatch error results.

If the override-redirect attribute of a window is False and some other client has selected
SubstructureRedirectMask on the parent, the X server generates ConfigureRequest events for each
window whose override-redirect flag is not set, and no further processing is performed.
Otherwise, the windows will be restacked in top to bottom order.

XRestackWindows can generate a BadWindow error.

60 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Window Functions Changing Window Attributes

4.9

Changing Window Attributes

Xlib provides functions that you can use to set window attributes. XChangeWindowAttributes is
the more general function that allows you to set one or more window attributes provided by the
XSetWindowAttributes structure. The other functions described in this section allow you to set
one specific window attribute, such as a window’s background.

To change one or more attributes for a given window, use XChangeWindowAttributes.

XChangeWindowAttributes(display , w, valuemask , attributes)
Display * display ;
Window w
unsigned long valuemask ;
XSetWindowAttributes * attributes ;

display Specifies the connection to the X server.
w Specifies the window.

valuemask Specifies which window attributes are defined in the attributes argument.
This mask is the bitwise inclusive OR of the valid attribute mask bits. If
valuemask is zero, the attributes are ignored and are not referenced. The
values and restrictions are the same as for XCreateWindow.

attributes Specifies the structure from which the values (as specified by the value mask)
are to be taken. The value mask should have the appropriate bits set to
indicate which attributes have been set in the structure (see Section 4.2).

Depending on the valuemask, the XChangeWindowAttributes function uses the window attributes
in the XSetWindowAttributes structure to change the specified window attributes. Changing the
background does not cause the window contents to be changed. To repaint the window and its
background, use XClearWindow. Setting the border or changing the background such that the
border tile origin changes causes the border to be repainted. Changing the background of a root
window to None or ParentRelative restores the default background pixmap. Changing the border
of a root window to CopyFromParent restores the default border pixmap. Changing the win-
gravity does not affect the current position of the window. Changing the backing-store of an
obscured window to WhenMapped or Always, or changing the backing-planes, backing-pixel or
save-under of a mapped window may have no immediate effect. Changing the colormap of a
window (that is, defining a new map, not changing the contents of the existing map) generates a
ColormapNotify event. Changing the colormap of a visible window may have no immediate
effect on the screen because the map may not be installed (see XinstallColormap). Changing the
cursor of a root window to None restores the default cursor. Whenever possible, you are
encouraged to share colormaps.

Multiple clients can select input on the same window. Their event masks are maintained
separately. When an event is generated, it is reported to all interested clients. However, only
one client at a time can select for SubstructureRedirectMask, ResizeRedirectMask and
ButtonPressMask. If a client attempts to select any of these event masks and some other client
has already selected one, a BadAccess error results. There is only one do-not-propagate-mask for
a window, not one per client.

XChangeWindowAttributes can generate BadAccess, BadColor, BadCursor, BadMatch, BadPixmap,
BadValue and BadWindow errors.

To set the background of a window to a given pixel, use XSetWindowBackground.

Window Management (X11R5): Xlib - C Language Binding 61
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Changing Window Attributes Window Functions

XSetWindowBackground(display , w, background pixel)
Display * display ;
Window w
unsigned long background _pixel

display Specifies the connection to the X server.
w Specifies the window.
background_pixel Specifies the pixel that is to be used for the background.

The XSetWindowBackground function sets the background of the window to the specified pixel
value. Changing the background does not cause the window contents to be changed.
XSetWindowBackground uses a pixmap of undefined size filled with the pixel value you passed.
If you try to change the background of an InputOnly window, a BadMatch error results.

XSetWindowBackground can generate BadMatch and BadWindow errors.
To set the background of a window to a given pixmap, use XSetWindowBackgroundPixmap.
XSetWindowBackgroundPixmap(display , w background pixmap)
Display * display ;
Window w
Pixmap background _pixmap ;
display Specifies the connection to the X server.
w Specifies the window.
background_pixmap Specifies the background pixmap, ParentRelative or None.

The XSetWindowBackgroundPixmap function sets the background pixmap of the window to the
specified pixmap. The background pixmap can immediately be freed if no further explicit
references to it are to be made. If ParentRelative is specified, the background pixmap of the
window’s parent is used, or on the root window, the default background is restored. If you try
to change the background of an InputOnly window, a BadMatch error results. If the background
is set to None, the window has no defined background.

XSetWindowBackgroundPixmap can generate BadMatch, BadPixmap and BadWindow errors.

Note: XSetWindowBackground and XSetWindowBackgroundPixmap do not change the current
contents of the window.

To change and repaint a window’s border to a given pixel, use XSetWindowBorder.
XSetWindowBorder(display , w, border_pixel)
Display * display ;
Window w
unsigned long border_pixel

display Specifies the connection to the X server.
w Specifies the window.
border_pixel Specifies the entry in the colormap.

The XSetWindowBorder function sets the border of the window to the pixel value you specify. If
you attempt to perform this on an InputOnly window, a BadMatch error results.

XSetWindowBorder can generate BadMatch and BadWindow errors.

To change and repaint the border tile of a given window, use XSetWindowBorderPixmap.

62 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Window Functions Changing Window Attributes

XSetWindowBorderPixmap(display , w, border pixmap)
Display * display ;
Window w
Pixmap border_pixmap ;

display Specifies the connection to the X server.
w Specifies the window.
border_pixmap Specifies the border pixmap or CopyFromParent.

The XSetWindowBorderPixmap function sets the border pixmap of the window to the pixmap you
specify. The border pixmap can be freed immediately if no further explicit references to it are to
be made. If you specify CopyFromParent, a copy of the parent window’s border pixmap is used.
If you attempt to perform this on an InputOnly window, a BadMatch error results.

XSetWindowBorderPixmap can generate BadMatch, BadPixmap and BadWindow errors.
To set the colormap of a given window, use XSetWindowColormap.

XSetWindowColormap(display , w colormap)
Display * display ;
Window w
Colormap colormap ;

display Specifies the connection to the X server.
w Specifies the window.
colormap Specifies the colormap.

The XSetWindowColormap function sets the specified colormap of the specified window. The
colormap must have the same visual type as the window, or a BadMatch error results.

XSetWindowColormap can generate BadColor, BadMatch and BadWindow errors.
To define which cursor will be used in a window, use XDefineCursor.

XDefineCursor(display , w cursor)
Display * display ;
Window w
Cursor cursor

display Specifies the connection to the X server.
w Specifies the window.
cursor Specifies the cursor that is to be displayed or None.

If a cursor is set, it will be used when the pointer is in the window. If the cursor is None, it is
equivalent to XUndefineCursor.

XDefineCursor can generate BadCursor and BadWindow errors.
To undefine the cursor in a given window, use XUndefineCursor.

XUndefineCursor(display , w)
Display * display ;

Window w
display Specifies the connection to the X server.
w Specifies the window.
Window Management (X11R5): Xlib - C Language Binding 63

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Changing Window Attributes Window Functions

The XUndefineCursor function undoes the effect of a previous XDefineCursor for this window.
When the pointer is in the window, the parent’s cursor will now be used. On the root window,
the default cursor is restored.

XUndefineCursor can generate a BadWindow error.

64 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Chapter 5

Window Information Functions

After you connect the display to the X server and create a window, you can use the Xlib window
information functions to:

» obtain information about a window

» translate screen coordinates

« manipulate property lists

- obtain and change window properties

- manipulate selections.

Window Management (X11R5): Xlib - C Language Binding 65
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Obtaining Window Information Window Information Functions

5.1 Obtaining Window Information

Xlib provides functions that you can use to obtain information about the window tree, the
window’s current attributes, the window’s current geometry, or the current pointer coordinates.
Because they are most frequently used by window managers, these functions all return a status
to indicate whether the windowv still exists.

To obtain the parent, a list of children, and number of children for a given window, use

XQueryTree.
Status XQueryTree(display , w root return
parent return , children_return , hchildren_return)
Display * display ;
Window w

Window * root return

Window * parent return

Window ** children_return ;
unsigned int * nchildren_return ;

display Specifies the connection to the X server.

w Specifies the window whose list of children, root, parent, and number of
children you want to obtain.

root_return Returns the root window.

parent_return Returns the parent window.

children_return Returns the list of children.
nchildren_return Returns the number of children.

The XQueryTree function returns the root ID, the parent window ID, a pointer to the list of
children windows, and the number of children in the list for the specified window. The children
are listed in current stacking order, from bottommost (first) to topmost (last). XQueryTree
returns zero if it fails and non-zero if it succeeds. To free this list when it is no longer needed,
use XFree.

XQueryTree can generate a BadWindow error.

To obtain the current attributes of a given window, use XGetWindowAttributes.

Status XGetWindowAttributes(display , w, window_attributes_return)
Display * display ;
Window w
XWindowAttributes * window_attributes_return ;
display Specifies the connection to the X server.
w Specifies the window whose current attributes you want to obtain.

window_attributes_return
Returns the specified window's attributes in the XWindowAttributes structure.

The XGetWindowAttributes function returns the current attributes for the specified window to an
XWindowAttributes structure.

66 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Window Information Functions Obtaining Window Information

typedef struct {

int x, vy; /* location of window */

int width, height; /* width and height of window */

int border_width; /* border width of window */

int depth; /* depth of window */

Visual *visual, /* the associated visual structure */

Window root; /* root of screen containing window */

int class; /* InputOutput, InputOnly*/

int bit_gravity; /* one of the bit gravity values */

int win_gravity; [* one of the window gravity values */

int backing_store; [* NotUseful, WhenMapped, Always */

unsigned long backing_planes; /* planes to be preserved if
possible */

unsigned long backing_pixel; /* value to be used when restoring
planes */

Bool save under; /* boolean, should bits under be
saved? */

Colormap colormap; /* color map to be associated with
window */

Bool map_installed; [* boolean, is color map currently
installed */

int map_state; [* 1sUnmapped, IsUnviewable,
IsViewable */

long all_event_masks; /* set of events all people have
interest in*/

long your_event_mask; /* my event mask */

long do_not_propagate_mask; /* set of events that should not
propagate */

Bool override_redirect; /* boolean value for
override-redirect */
Screen *screen; /* back pointer to correct screen */

} XWindowAttributes;

The x and y members are set to the upper-left outer corner relative to the parent window's
origin. The width and height members are set to the inside size of the window, not including the
border. The border_width member is set to the window’s border width in pixels. The depth
member is set to the depth of the window (that is, bits per pixel for the object). The visual
member is a pointer to the screen’s associated Visual structure. The root member is set to the
root window of the screen containing the window. The class member is set to the window's
class and can be either InputOutput or InputOnly.

The bit_gravity member is set to the window’s bit gravity and can be one of the following:

ForgetGravity EastGravity
NorthWestGravity SouthWestGravity
NorthGravity SouthGravity
NorthEastGravity SouthEastGravity
WestGravity StaticGravity
CenterGravity

The win_gravity member is set to the window’s window gravity and can be one of the following:

Window Management (X11R5): Xlib - C Language Binding 67
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Obtaining Window Information Window Information Functions

UnmapGravity EastGravity
NorthWestGravity ~ SouthWestGravity
NorthGravity SouthGravity
NorthEastGravity = SouthEastGravity
WestGravity StaticGravity
CenterGravity

For additional information on gravity, see Section 4.3.

The backing_store member is set to indicate how the X server should maintain the contents of a
window and can be WhenMapped, Always or NotUseful. The backing_planes member is set to
indicate (with bits set to 1) which bit planes of the window hold dynamic data that must be
preserved in backing_stores and during save_unders. The backing pixel member is set to
indicate what values to use for planes not set in backing_planes.

The save_under member is set to True or False. The colormap member is set to the colormap for
the specified window and can be a colormap ID or None. The map_installed member is set to
indicate whether the colormap is currently installed and can be True or False. The map_state
member is set to indicate the state of the window and can be IsUnmapped, IsUnviewable or
IsViewable. IsUnviewable is used if the window is mapped but some ancestor is unmapped.

The all_event_masks member is set to the bitwise inclusive OR of all event masks selected on the
window by all clients. The your_event_mask member is set to the bitwise inclusive OR of all
event masks selected by the querying client. The do_not_propagate_mask member is set to the
bitwise inclusive OR of the set of events that should not propagate.

The override_redirect member is set to indicate whether this window overrides structure control
facilities and can be True or False. Window manager clients should ignore the window if this
member is True.

The screen member is set to a screen pointer that gives you a back pointer to the correct screen.
This makes it easier to obtain the screen information without having to loop over the root
window fields to see which field matches.

XGetWindowAttributes can generate BadDrawable and BadWindow errors.
To obtain the current geometry of a given drawable, use XGetGeometry.

Status XGetGeometry(display , d, root return
X return , y return , width return
height_return , border_width_return , depth_return)
Display * display ;
Drawable d,
Window * root return
int * x return , * y return ;
unsigned int * width_return |, * height return ;
unsigned int * border_width_return ;
unsigned int * depth_return

display Specifies the connection to the X server.

d Specifies the drawable, which can be a window or a pixmap.

root_return Returns the root window.

X_return

y_return Return the x and y coordinates that define the location of the drawable. For a

window, these coordinates specify the upper-left outer corner relative to its
parent’s origin. For pixmaps, these coordinates are always zero.

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Window Information Functions Obtaining Window Information

width_return
height_return Return the drawable’s dimensions (width and height). For a window, these
dimensions specify the inside size, not including the border.

border_width_return
Returns the border width in pixels. If the drawable is a pixmap, it returns
zero.

depth_return Returns the depth of the drawable (bits per pixel for the object).

The XGetGeometry function returns the root window and the current geometry of the drawable.
The geometry of the drawable includes the x and y coordinates, width and height, border width
and depth. These are described in the argument list. It is legal to pass to this function a window
whose class is InputOnly.

XGetGeometry can generate a BadDrawable error.

Window Management (X11R5): Xlib - C Language Binding 69
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Translating Screen Coordinates Window Information Functions

5.2

70

Translating Screen Coordinates

Applications sometimes need to perform a coordinate transformation from the coordinate space
of one window to another window or need to determine which window the pointing device is
in. XTranslateCoordinates and XQueryPointer fulfill these needs (and avoid any race conditions)
by asking the X server to perform these operations.

To translate a coordinate in one window to the coordinate space of another window, use
XTranslateCoordinates.

Bool XTranslateCoordinates(display , src w, dest w,
src x , src_y , dest x return
dest y return , child_return)

Display * display ;

Window src w, dest w ;

int src x, srcy;

int * dest x return , * dest y return
Window * child_return ;

display Specifies the connection to the X server.

src_w Specifies the source window.

dest_w Specifies the destination window.

src_x

src_y Specify the x and y coordinates within the source window.

dest_x_return

dest y return Return the x and y coordinates within the destination window.

child_return Returns the child if the coordinates are contained in a mapped child of the

destination window.

If XTranslateCoordinates returns True, it takes the src_x and src_y coordinates relative to the
source window’s origin and returns these coordinates to dest x_return and dest_y return
relative to the destination window’s origin. If XTranslateCoordinates returns False, src_ w and
dest_w are on different screens, and dest_x_return and dest_y_return are zero. If the coordinates
are contained in a mapped child of dest_w, that child is returned to child_return. Otherwise,
child_return is set to None.

XTranslateCoordinates can generate a BadwWindow error.

To obtain the screen coordinates of the pointer, or to determine the pointer coordinates relative
to a specified window, use XQueryPointer.

Bool XQueryPointer(display , w root_return

child_return , root x_return , root_ y return ,
win_Xx return , win_y return , mask return)
Display * display ;
Window w
Window * root return | * child_return ;
int * root x_return , * root_y return ;
int * win_x _return , * win_y return
unsigned int * mask return ;
display Specifies the connection to the X server.
w Specifies the window.

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Window Information Functions Translating Screen Coordinates

root_return Returns the root window that the pointer is in.

child_return Returns the child window that the pointer is located in, if any.
root_x_return

root_y return Return the pointer coordinates relative to the root window’s origin.
win_x_return

win_y return Return the pointer coordinates relative to the specified window.
mask_return Returns the current state of the modifier keys and pointer buttons.

The XQueryPointer function returns the root window the pointer is logically on and the pointer
coordinates relative to the root window's origin. If XQueryPointer returns False, the pointer is not
on the same screen as the specified window, and XQueryPointer returns None to child_return and
zero to win_x_return and win_y_return. If XQueryPointer returns True, the pointer coordinates
returned to win_x_return and win_y_return are relative to the origin of the specified window. In
this case, XQueryPointer returns the child that contains the pointer, if any, or else None to
child_return.

XQueryPointer returns the current logical state of the keyboard buttons and the modifier keys in
mask_return. It sets mask_return to the bitwise inclusive OR of one or more of the button or
modifier key bitmasks to match the current state of the mouse buttons and the modifier keys.

Note that the logical state of a device (as seen through Xlib) may lag the physical state if device
event processing is frozen (see Section 13.1).

XQueryPointer can generate a BadWindow error.

Window Management (X11R5): Xlib - C Language Binding 71
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Properties and Atoms Window Information Functions

5.3

72

Properties and Atoms

A property is a collection of named, typed data. The window system has a set of predefined
properties (for example, the name of a window, size hints, and so on), and users can define any
other arbitrary information and associate it with windows. Each property has a name, which is
an ISO Latin-1 string. For each named property, a unique identifier (atom) is associated with it.
A property also has a type; for example, string or integer. These types are also indicated using
atoms, so arbitrary new types can be defined. Data of only one type may be associated with a
single property hame. Clients can store and retrieve properties associated with windows. For
efficiency reasons, an atom is used rather than a character string. XinternAtom can be used to
obtain the atom for property names.

A property is also stored in one of several possible formats. The X server can store the
information as 8-bit quantities, 16-bit quantities or 32-bit quantities. This permits the X server to
present the data in the byte order that the client expects.

Note: If you define further properties of complex type, you must encode and decode them
yourself. These functions must be carefully written if they are to be portable. For
further information about how to write a library extension, Appendix C.

The type of a property is defined by an atom, which allows for arbitrary extension in this type
scheme.

Certain property names are predefined in the server for commonly used functions. The atoms
for these properties are defined in <X11/Xatom.h>. To avoid name clashes with user symbols,
the #define name for each atom has the XA _ prefix. For definitions of these properties, see
Section 5.3. For an explanation of the functions that let you get and set much of the information
stored in these predefined properties, see Chapter 15.

The core protocol imposes no semantics on these property names, but semantics are specified in
other X Consortium standards, such as the ICCCM specification and the XLFD specification.

You can use properties to communicate other information between applications. The functions
described in this section let you define new properties and get the unique atom IDs in your
applications.

Although any particular atom can have some client interpretation within each of the name
spaces, atoms occur in five distinct name spaces within the protocol:

- selections

- property names

- property types

. font properties

- type of a ClientMessage event (none are built into the X server).
The built-in selection property names are:

PRIMARY
SECONDARY

The built-in property names are:

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Window Information Functions

CUT_BUFFERO
CUT_BUFFER1
CUT_BUFFER2
CUT_BUFFER3
CUT_BUFFER4
CUT_BUFFERS5
CUT_BUFFERS6
CUT_BUFFER7
RGB_BEST_MAP
RGB_BLUE_MAP
RGB_DEFAULT_MAP
RGB_GRAY_MAP
RGB_GREEN_MAP
RGB_RED_MAP

The built-in property types are:

ARC

ATOM
BITMAP
CARDINAL
COLORMAP
CURSOR
DRAWABLE
FONT
INTEGER
PIXMAP

Properties and Atoms

RESOURCE_MANAGER
WM_CLASS
WM_CLIENT_MACHINE
WM_COLORMAP_WINDOWS
WM_COMMAND
WM_HINTS
WM_ICON_NAME
WM_ICON_SIZE
WM_NAME
WM_NORMAL_HINTS
WM_PROTOCOLS
WM_STATE
WM_TRANSIENT_FOR

POINT
RGB_COLOR_MAP
RECTANGLE
STRING
VISUALID
WINDOW
WM_HINTS
WM_SIZE_HINTS

The built-in font property names are:

MIN_SPACE
NORM_SPACE
MAX_SPACE
END_SPACE
SUPERSCRIPT_X
SUPERSCRIPT_Y
SUBSCRIPT_X
SUBSCRIPT_Y
UNDERLINE_POSITION
UNDERLINE_THICKNESS
FONT_NAME
FULL_NAME

STRIKEOUT_DESCENT
STRIKEOUT_ASCENT
ITALIC_ANGLE
X_HEIGHT
QUAD_WIDTH
WEIGHT
POINT_SIZE
RESOLUTION
COPYRIGHT
NOTICE
FAMILY_NAME
CAP_HEIGHT

For further information about font properties, see Section 9.5.
To return an atom for a given name, use XinternAtom.

Atom XinternAtom(display ,
Display * display ;
char * atom_name,;
Bool only if exists ;

atom_name, only if exists)

display Specifies the connection to the X server.

atom_name Specifies the name associated with the atom you want returned.

Window Management (X11R5): Xlib - C Language Binding 73

0 1995, X/Open Company Limited.

Stamp:XXXXXXXXX XX XXX XXXXXX XXX

Properties and Atoms Window Information Functions

74

only if exists Specifies a Boolean value that indicates whether XlInternAtom creates the atom.

The XlinternAtom function returns the atom identifier associated with the specified atom_name
string. If only_if exists is False, the atom is created if it does not exist. Therefore, XInternAtom
can return None. If the atom name is not in the Host Portable Character Encoding the result is
implementation-dependent. Case matters; the strings thing, Thing and thinG all designate
different atoms. The atom will remain defined even after the client’s connection closes. It will
become undefined only when the last connection to the X server closes.

XlnternAtom can generate BadAlloc and BadValue errors.
To return a name for a given atom identifier, use XGetAtomName.

char *XGetAtomName(display , atom)
Display * display ;

Atom atom;,
display Specifies the connection to the X server.
atom Specifies the atom for the property name you want returned.

The XGetAtomName function returns the name associated with the specified atom. If the data
returned by the server is in the Latin Portable Character Encoding, then the returned string is in
the Host Portable Character Encoding. Otherwise, the result is implementation-dependent. To
free the resulting string, call XFree.

XGetAtomName can generate a BadAtom error.

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Window Information Functions Obtaining and Changing Window Properties

5.4 Obtaining and Changing Window Properties

You can attach a property list to every window. Each property has a name, a type, and a value
(see Section 5.3). The value is an array of 8-bit, 16-bit, or 32-bit quantities, whose interpretation
is left to the clients.

Xlib provides functions that you can use to obtain, change, update, or interchange window
properties. In addition, Xlib provides other utility functions for inter-client communication (see
Chapter 15).

To obtain the type, format, and value of a property of a given window, use XGetWindowProperty.

int XGetWindowProperty(display , w, property

long offset , long length , delete , req type |,
actual_type_return , actual_format_return ,
nitems_return , bytes after_return , prop_return)

Display * display ;

Window w

Atom property

long long offset , long length ;

Bool delete ;

Atom req_type ;

Atom * actual type_return ;

int * actual_format_return ;

unsigned long * nitems_return
unsigned long * bytes after return ;
unsigned char ** prop return ;

display Specifies the connection to the X server.

w Specifies the window whose property you want to obtain.

property Specifies the property name.

long_offset Specifies the offset in the specified property (in 32-bit quantities) where the
data is to be retrieved.

long_length Specifies the length in 32-bit multiples of the data to be retrieved.

delete Specifies a Boolean value that determines whether the property is deleted.

req_type Specifies the atom identifier associated with the property type or
AnyPropertyType.

actual_type_return
Returns the atom identifier that defines the actual type of the property.

actual_format_return
Returns the actual format of the property.

nitems_return Returns the actual number of 8-bit, 16-bit, or 32-bit items stored in the
prop_return data.

bytes_after_return Returns the number of bytes remaining to be read in the property if a partial
read was performed.

prop_return Returns the data in the specified format.

The XGetWindowProperty function returns the actual type of the property; the actual format of
the property; the number of 8-bit, 16-bit or 32-bit items transferred; the number of bytes
remaining to be read in the property; and a pointer to the data actually returned.

Window Management (X11R5): Xlib - C Language Binding 75
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Obtaining and Changing Window Properties Window Information Functions

XGetWindowProperty sets the return arguments as follows:

- If the specified property does not exist for the specified window, XGetWindowProperty returns
None to actual type return and the value zero to actual format return and
bytes_after_return. The nitems_return argument is empty. In this case, the delete argument
is ignored.

- If the specified property exists but its type does not match the specified type,
XGetWindowProperty returns the actual property type to actual type return, the actual
property format (never zero) to actual_format_return, and the property length in bytes (even
if the actual_format _return is 16 or 32) to bytes after_return. It also ignores the delete
argument. The nitems_return argument is empty.

- If the specified property exists and either you assign AnyPropertyType to the req_type
argument or the specified type matches the actual property type, XGetWindowProperty
returns the actual property type to actual_type_return and the actual property format (never
zero) to actual format return. It also returns a value to bytes after return and
nitems_return, by defining the following values:

N Actual length of the stored property in bytes (even if the format is 16 or 32).
I 4*long_offset

T N-I
L MINIMUMC(T, 4 * long_length)
A N-(+L)

The returned value starts at byte index | in the property (indexing from zero), and its length
in bytes is L. If the value for long_offset causes L to be negative, a BadValue error results. The
value of bytes_after_return is A, giving the number of trailing unread bytes in the stored
property.

XGetWindowProperty always allocates one extra byte in prop_return (even if the property is
zero-length) and sets it to ASCII null so that simple properties consisting of characters do not
have to be copied into yet another string before use. If delete is True and bytes_after_return is
zero, XGetWindowProperty deletes the property from the window and generates a
PropertyNotify event on the window.

The function returns Success if it executes successfully. To free the resulting data, use XFree.
XGetWindowProperty can generate BadAtom, BadValue and BadWindow errors.

To obtain a given window's property list, use XListProperties.

Atom *XListProperties(display , w, num_prop_return)
Display * display ;
Window w
int * num_prop_return
display Specifies the connection to the X server.
w Specifies the window whose property list you want to obtain.

num_prop_return Returns the length of the properties array.

The XListProperties function returns a pointer to an array of atom properties that are defined for
the specified window or returns NULL if no properties were found. To free the memory
allocated by this function, use XFree.

76 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Window Information Functions Obtaining and Changing Window Properties

XListProperties can generate a BadwWindow error.
To change a property of a given window, use XChangeProperty.

XChangeProperty(display , w, property , type ,
format , mode data , nelements)
Display * display ;
Window w
Atom property , type ;
int format ;
int mode,
unsigned char * data ;
int nelements ;

display Specifies the connection to the X server.

w Specifies the window whose property you want to change.

property Specifies the property name.

type Specifies the type of the property. The X server does not interpret the type but

simply passes it back to an application that later calls XGetWindowProperty.

format Specifies whether the data should be viewed as a list of 8-bit, 16-bit or 32-bit
quantities. Possible values are 8, 16 and 32. This information allows the X
server to correctly perform byte-swap operations as necessary. If the format is
16-bit or 32-bit, you must explicitly cast your data pointer to an (unsigned
char *) in the call to XChangeProperty.

mode Specifies the mode of the operation. You can pass PropModeReplace,
PropModePrepend or PropModeAppend.

data Specifies the property data.

nelements Specifies the number of elements of the specified data format.

The XChangeProperty function alters the property for the specified window and causes the X
server to generate a PropertyNotify event on that window. XChangeProperty performs the
following:

- If mode is PropModeReplace, XChangeProperty discards the previous property value and stores
the new data.

- If mode is PropModePrepend or PropModeAppend, XChangeProperty inserts the specified data
before the beginning of the existing data or onto the end of the existing data, respectively.
The type and format must match the existing property value, or a BadMatch error results. If
the property is undefined, it is treated as defined with the correct type and format with zero-
length data.

The lifetime of a property is not tied to the storing client. Properties remain until explicitly
deleted, until the window is destroyed, or until the server resets. For a discussion of what
happens when the connection to the X server is closed, see Section 3.6. The maximum size of a
property is server dependent and can vary dynamically depending on the amount of memory
the server has available. (If there is insufficient space, a BadAlloc error results.)

XChangeProperty can generate BadAlloc, BadAtom, BadMatch, BadValue and BadWindow errors.

To rotate a window’s property list, use XRotateWindowProperties.

Window Management (X11R5): Xlib - C Language Binding 77
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Obtaining and Changing Window Properties Window Information Functions

XRotateWindowProperties(display , w, properties
num_prop , npositions)
Display * display ;
Window w
Atom properties [];
int num_prop ;
int npositions

display Specifies the connection to the X server.

w Specifies the window.

properties Specifies the array of properties that are to be rotated.
num_prop Specifies the length of the properties array.

npositions Specifies the rotation amount.

The XRotateWindowProperties function allows you to rotate properties on a window and causes
the X server to generate PropertyNotify events. If the property names in the properties array are
viewed as being numbered starting from zero and if there are num_prop property names in the
list, then the value associated with property hame | becomes the value associated with property
name (I + npositions) mod N for all | from zero to N —1. The effect is to rotate the states by
npositions places around the virtual ring of property names (right for positive npositions, left for
negative npositions). If npositions mod N is non-zero, the X server generates a PropertyNotify
event for each property in the order that they are listed in the array. If an atom occurs more than
once in the list or no property with that name is defined for the window, a BadMatch error
results. If a BadAtom or BadMatch error results, no properties are changed.

XRotateWindowProperties can generate BadAtom, BadMatch and BadWindow errors.
To delete a property on a given window, use XDeleteProperty.

XDeleteProperty(display , w, property)
Display * display ;
Window w
Atom property

display Specifies the connection to the X server.
w Specifies the window whose property you want to delete.
property Specifies the property name.

The XDeleteProperty function deletes the specified property only if the property was defined on
the specified window and causes the X server to generate a PropertyNotify event on the window
unless the property does not exist.

XDeleteProperty can generate BadAtom and BadWindow errors.

78 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Window Information Functions Selections

5.5

Selections

Selections are one method used by applications to exchange data. By using the property
mechanism, applications can exchange data of arbitrary types and can negotiate the type of the
data. A selection can be thought of as an indirect property with a dynamic type. That is, rather
than having the property stored in the X server, the property is maintained by some client (the
owner). A selection is global in nature (considered to belong to the user but be maintained by
clients) rather than being private to a particular window subhierarchy or a particular set of
clients.

Xlib provides functions that you can use to set, get or request conversion of selections. This
allows applications to implement the notion of current selection, which requires that notification
be sent to applications when they no longer own the selection. Applications that support
selection often highlight the current selection and so must be informed when another application
has acquired the selection so that they can unhighlight the selection.

When a client asks for the contents of a selection, it specifies a selection target type. This target
type can be used to control the transmitted representation of the contents. For example, if the
selection is “‘the last thing the user clicked on” and that is currently an image, then the target
type might specify whether the contents of the image should be sent in XY format or Z format.

The target type can also be used to control the class of contents transmitted; for example, asking
for the ““looks” (fonts, line spacing, indentation, and so forth) of a paragraph selection, not the
text of the paragraph. The target type can also be used for other purposes. The protocol does
not constrain the semantics.

To set the selection owner, use XSetSelectionOwner.

XSetSelectionOwner(display , selection , owner, time)
Display * display ;
Atom selection
Window owner ;
Time time ;

display Specifies the connection to the X server.
selection Specifies the selection atom.

owner Specifies the owner of the specified selection atom. You can pass a window or
None.

time Specifies the time. You can pass either a timestamp or CurrentTime.

The XSetSelectionOwner function changes the owner and last-change time for the specified
selection and has no effect if the specified time is earlier than the current last-change time of the
specified selection or is later than the current X server time. Otherwise, the last-change time is
set to the specified time, with CurrentTime replaced by the current server time. If the owner
window is specified as None, then the owner of the selection becomes None (that is, no owner).
Otherwise, the owner of the selection becomes the client executing the request.

If the new owner (whether a client or None) is not the same as the current owner of the selection
and the current owner is not None, the current owner is sent a SelectionClear event. If the client
that is the owner of a selection is later terminated (that is, its connection is closed) or if the owner
window it has specified in the request is later destroyed, the owner of the selection automatically
reverts to None, but the last-change time is not affected. The selection atom is uninterpreted by
the X server. XGetSelectionOwner returns the owner window, which is reported in
SelectionRequest and SelectionClear events. Selections are global to the X server.

Window Management (X11R5): Xlib - C Language Binding 79
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Selections Window Information Functions

XSetSelectionOwner can generate BadAtom and BadWindow errors.
To return the selection owner, use XGetSelectionOwner.

Window XGetSelectionOwner(display , selection)
Display * display ;
Atom selection

display Specifies the connection to the X server.
selection Specifies the selection atom whose owner you want returned.

The XGetSelectionOwner function returns the window ID associated with the window that
currently owns the specified selection. If no selection was specified, the function returns the
constant None. If None is returned, there is no owner for the selection.

XGetSelectionOwner can generate a BadAtom error.

To request conversion of a selection, use XConvertSelection.

XConvertSelection(display , selection , target |,
property , requestor , time)
Display * display ;
Atom selection , target ;

Atom property
Window requestor ;

Time time ;
display Specifies the connection to the X server.
selection Specifies the selection atom.
target Specifies the target atom.
property Specifies the property name. You also can pass None.
requestor Specifies the requestor.
time Specifies the time. You can pass either a timestamp or CurrentTime.

XConvertSelection requests that the specified selection be converted to the specified target type:

- If the specified selection has an owner, the X server sends a SelectionRequest event to that
owner.

- If no owner for the specified selection exists, the X server generates a SelectionNotify event to
the requestor with property None.

The arguments are passed on unchanged in either of the events. There are two predefined
selection atoms: PRIMARY and SECONDARY.

XConvertSelection can generate BadAtom and BadWindow errors.

80 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Chapter 6

Pixmap and Cursor Functions

Once you have connected to an X server, you can use the Xlib functions to:
. create and free pixmaps

- create, recolor and free cursors.

Window Management (X11R5): Xlib - C Language Binding 81
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Creating and Freeing Pixmaps Pixmap and Cursor Functions

6.1

82

Creating and Freeing Pixmaps

Pixmaps can only be used on the screen on which they were created. Pixmaps are off-screen
resources that are used for various operations; for example, defining cursors as tiling patterns or
as the source for certain raster operations. Most graphics requests can operate either on a
window or on a pixmap. A bitmap is a single bit-plane pixmap.

To create a pixmap of a given size, use XCreatePixmap.

Pixmap XCreatePixmap(display , d, width , height , depth)
Display * display ;
Drawable d,
unsigned int width , height ;
unsigned int depth ;

display Specifies the connection to the X server.

d Specifies which screen the pixmap is created on.

width

height Specify the width and height, which define the dimensions of the pixmap.
depth Specifies the depth of the pixmap.

The XCreatePixmap function creates a pixmap of the width, height, and depth you specified and
returns a pixmap ID that identifies it. It is valid to pass an InputOnly window to the drawable
argument. The width and height arguments must be non-zero, or a BadValue error results. The
depth argument must be one of the depths supported by the screen of the specified drawable, or
a BadValue error results.

The server uses the specified drawable to determine on which screen to create the pixmap. The
pixmap can be used only on this screen and only with other drawables of the same depth (see
XCopyPlane for an exception to this rule). The initial contents of the pixmap are undefined.

XCreatePixmap can generate BadAlloc, BadDrawable and BadValue errors.
To free all storage associated with a specified pixmap, use XFreePixmap.

XFreePixmap(display , pixmap)
Display * display ;
Pixmap pixmap ;

display Specifies the connection to the X server.
pixmap Specifies the pixmap.

The XFreePixmap function first deletes the association between the pixmap ID and the pixmap.
Then, the X server frees the pixmap storage when there are no references to it. The pixmap
should never be referenced again.

XFreePixmap can generate a BadPixmap error.

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Pixmap and Cursor Functions Creating, Recoloring and Freeing Cursors

6.2 Creating, Recoloring and Freeing Cursors

Each window can have a different cursor defined for it. Whenever the pointer is in a visible
window, it is set to the cursor defined for that window. If no cursor was defined for that
window, the cursor is the one defined for the parent window.

From X’s perspective, a cursor consists of a cursor source, mask, colors and a hotspot. The mask
pixmap determines the shape of the cursor and must be a depth of one. The source pixmap
must have a depth of one, and the colors determine the colors of the source. The hotspot defines
the point on the cursor that is reported when a pointer event occurs. There may be limitations
imposed by the hardware on cursors as to size and whether a mask is implemented.
XQueryBestCursor can be used to find out what sizes are possible. There is a standard font for
creating cursors, but Xlib provides functions that you can use to create cursors from an arbitrary
font, or from bitmaps.

To create a cursor from the standard cursor font, use XCreateFontCursor.

#include <X11/cursorfont.h>

Cursor XCreateFontCursor(display , shape)
Display * display ;
unsigned int shape ;

display Specifies the connection to the X server.
shape Specifies the shape of the cursor.

X provides a set of standard cursor shapes in a special font named cursor. Applications are
encouraged to use this interface for their cursors because the font can be customized for the
individual display type. The shape argument specifies which glyph of the standard fonts to use.

The hotspot comes from the information stored in the cursor font. The initial colors of a cursor
are a black foreground and a white background (see XRecolorCursor). For further information
about cursor shapes, see Appendix B.

XCreateFontCursor can generate BadAlloc and BadValue errors.
To create a cursor from font glyphs, use XCreateGlyphCursor.

Cursor XCreateGlyphCursor(display , source font , mask font ,
source_char , mask char , foreground color ,
background _color)

Display * display ;

Font source font , mask font ;
unsigned int source_char , mask char ;
XColor * foreground_color ;

XColor * background color

display Specifies the connection to the X server.
source_font Specifies the font for the source glyph.
mask_font Specifies the font for the mask glyph or None.
source_char Specifies the character glyph for the source.
mask_char Specifies the glyph character for the mask.

foreground_color Specifies the RGB values for the foreground of the source.

Window Management (X11R5): Xlib - C Language Binding 83
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Creating, Recoloring and Freeing Cursors Pixmap and Cursor Functions

background_color Specifies the RGB values for the background of the source.

The XCreateGlyphCursor function is similar to XCreatePixmapCursor except that the source and
mask bitmaps are obtained from the specified font glyphs. The source_char must be a defined
glyph in source_font, or a BadValue error results. If mask_font is given, mask _char must be a
defined glyph in mask _font, or a BadValue error results. The mask font and character are
optional. The origins of the source_char and mask _char (if defined) glyphs are positioned
coincidently and define the hotspot. The source_char and mask_char need not have the same
bounding box metrics, and there is no restriction on the placement of the hotspot relative to the
bounding boxes. If no mask_char is given, all pixels of the source are displayed. You can free
the fonts immediately by calling XFreeFont if no further explicit references to them are to be
made.

For 2-byte matrix fonts, the 16-bit value should be formed with the bytel member in the most-
significant byte and the byte2 member in the least-significant byte.

XCreateGlyphCursor can generate BadAlloc, BadFont and BadValue errors.
To create a cursor from two bitmaps, use XCreatePixmapCursor.

Cursor XCreatePixmapCursor(display , source , mask,
foreground_color , background color , X, y)
Display * display ;
Pixmap source ;
Pixmap mask;
XColor * foreground_color ;
XColor * background color
unsigned int X, Y;

display Specifies the connection to the X server.
source Specifies the shape of the source cursor.
mask Specifies the cursor’s source bits to be displayed or None.

foreground_color Specifies the RGB values for the foreground of the source.
background_color Specifies the RGB values for the background of the source.

X
y Specify the x and y coordinates, which indicate the hotspot relative to the
source’s origin.

The XCreatePixmapCursor function creates a cursor and returns the cursor ID associated with it.
The foreground and background RGB values must be specified using foreground_color and
background_color, even if the X server only has a StaticGray or GrayScale screen. The foreground
color is used for the pixels set to 1 in the source, and the background color is used for the pixels
set to 0. Both source and mask, if specified, must have depth one (or a BadMatch error results)
but can have any root. The mask argument defines the shape of the cursor. The pixels setto 1in
the mask define which source pixels are displayed, and the pixels set to 0 define which pixels are
ignored. If no mask is given, all pixels of the source are displayed. The mask, if present, must be
the same size as the pixmap defined by the source argument, or a BadMatch error results. The
hotspot must be a point within the source, or a BadMatch error results.

The components of the cursor can be transformed arbitrarily to meet display limitations. The
pixmaps can be freed immediately if no further explicit references to them are to be made.
Subsequent drawing in the source or mask pixmap has an undefined effect on the cursor. The X
server might or might not make a copy of the pixmap.

84 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Pixmap and Cursor Functions Creating, Recoloring and Freeing Cursors

XCreatePixmapCursor can generate BadAlloc and BadPixmap errors.
To determine useful cursor sizes, use XQueryBestCursor.

Status XQueryBestCursor(display , d, width , height |,
width_return , height return)
Display * display ;
Drawable d,
unsigned int width , height ;

unsigned int * width_return |, * height_return ;
display Specifies the connection to the X server.
d Specifies the drawable, which indicates the screen.
width
height Specify the width and height of the cursor that you want the size information
for.

width_return
height_return Return the best width and height that is closest to the specified width and
height.

Some displays allow larger cursors than other displays. The XQueryBestCursor function provides
a way to find out what size cursors are actually possible on the display. It returns the largest
size that can be displayed. Applications should be prepared to use smaller cursors on displays
that cannot support large ones.

XQueryBestCursor can generate a BadDrawable error.
To change the color of a given cursor, use XRecolorCursor.

XRecolorCursor(display , cursor , foreground_color ,
background _color)
Display * display ;
Cursor cursor

XColor * foreground_color , * background _color
display Specifies the connection to the X server.
cursor Specifies the cursor.

foreground_color Specifies the RGB values for the foreground of the source.
background_color Specifies the RGB values for the background of the source.

The XRecolorCursor function changes the color of the specified cursor, and if the cursor is being
displayed on a screen, the change is visible immediately. Note that the pixel members of the
XColor structures are ignored, only the RGB values are used.

XRecolorCursor can generate a BadCursor error.
To free (destroy) a given cursor, use XFreeCursor.

XFreeCursor(display , cursor)
Display * display ;
Cursor cursor ;

display Specifies the connection to the X server.
cursor Specifies the cursor.
Window Management (X11R5): Xlib - C Language Binding 85

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Creating, Recoloring and Freeing Cursors Pixmap and Cursor Functions

The XFreeCursor function deletes the association between the cursor resource ID and the
specified cursor. The cursor storage is freed when no other resource references it. The specified
cursor 1D should not be referred to again.

XFreeCursor can generate a BadCursor error.

86 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Chapter 7

Color Management Functions

Each X window always has an associated colormap that provides a level of indirection between
pixel values and colors displayed on the screen. Xlib provides functions that you can use to
manipulate a colormap. The X protocol defines colors using values in the RGB color space. The
RGB color space is device-dependent; rendering an RGB value on differing output devices
typically results in different colors. Xlib also provides a means for clients to specify color using
device-independent color spaces, for consistent results across devices. Xlib supports device-
independent color spaces derivable from the CIE XYZ color space. This includes the CIE XYZ,
xyY, L*u*v* and L*a*b* color spaces as well as the TekHVC color space.

This chapter discusses how to:
. create, copy and destroy a colormap
- specify colors by name or value
- allocate, modify and free color cells
- read entries in a colormap
- convert between color spaces
- control aspects of color conversion
« query the color gamut of a screen
- add new color spaces.

All functions, types and symbols in this chapter with the prefix “Xcms” are defined in
<X11/Xcms.h>. The remaining functions and types are defined in <X11/Xlib.h>.

Functions in this chapter manipulate the representation of color on the screen. For each possible
value that a pixel can take in a window, there is a color cell in the colormap. For example, if a
window is 4 bits deep, pixel values 0 through 15 are defined. A colormap is a collection of color
cells. A color cell consists of a triple of red, green and blue values. The hardware imposes limits
on the number of significant bits in these values. As each pixel is read out of display memory,
the pixel is looked up in a colormap. The RGB value of the cell determines what color is
displayed on the screen. On a grayscale display with a black-and-white monitor the values are
combined to determine the brightness on the screen.

Typically, an application allocates color cells or sets of color cells to obtain the desired colors.
The client can allocate read-only cells, in which case the pixel values for these colors can be
shared among multiple applications, and the RGB value of the cell cannot be changed. If the
client allocates read/write cells, they are exclusively owned by the client, and the color
associated with the pixel value may be changed at will. Cells must be allocated (and, if
read/write, initialized with an RGB value) by a client to obtain desired colors; use of pixel value
for an unallocated cell results in an undefined color.

Because colormaps are associated with windows, X supports displays with multiple colormaps
and, indeed, different types of colormaps. If there are not sufficient colormap resources in the
display, some windows will display in their true colors, and others will display with incorrect
colors. A window manager usually controls which windows are displayed in their true colors if
more than one colormap is required for the color resources the applications are using. At any
time, there is a set of installed colormaps for a screen. Windows using one of the installed
colormaps display with true colors, and windows using other colormaps generally display with

Window Management (X11R5): Xlib - C Language Binding 87
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Color Management Functions

incorrect colors. The set of installed colormaps is controlled using XinstallColormap and
XUninstallColormap.

Colormaps are local to a particular screen. Screens always have a default colormap, and
programs typically allocate cells out of this colormap. You should not in general write
applications that monopolize color resources. Although some hardware supports multiple
colormaps installed at one time, many of the hardware displays built today support only a single
installed colormap, so the primitives are written to encourage sharing of colormap entries
between applications.

The DefaultColormap macro returns the default colormap. The DefaultVisual macro returns the
default visual type for the specified screen. Possible visual types are StaticGray, GrayScale,
StaticColor, PseudoColor, TrueColor or DirectColor (see Section 4.1).

88 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Color Management Functions Color Structures

7.1 Color Structures

Functions which operate only on RGB color space values use an XColor structure, which

contains:
typedef struct {
unsigned long pixel; [* pixel value */
unsigned short red, green, blue; /* rgb values */
char flags; /* DoRed, DoGreen, DoBlue */
char pad;
} XColor;

The red, green and blue values are always in the range 0 to 65535 inclusive, independent of the
number of bits actually used in the display hardware. The server scales these values down to
the range used by the hardware. Black is represented by (0,0,0), white is represented by
(65535,65535,65535). In some functions, the flags member controls which of the red, green and
blue members is used and can be the inclusive OR of zero or more of DoRed, DoGreen and
DoBlue.

Functions which operate on all color space values use an XcmsColor structure. This structure
contains a union of substructures, each supporting color specification encoding for a particular
color space. Like the XColor structure, the XcmsColor structure contains pixel and color
specification information (the spec member in the XcmsColor structure).

typedef unsigned long XcmsColorFormat; /* Color Specification Format */

typedef struct {
union {
XcmsRGB RGB;
XcmsRGBi RGB;;
XecmsCIEXYZ CIEXYZ;
XcmsCIEuvY CIEuvY;
XcmsCIExyY CIEXxyY;
XcmsClELab CIELab;
XcmsCIELuv CIELuv;
XcmsTekHVC TekHVC;
XcmsPad Pad;
} spec;
XcmsColorFormat format;
unsigned long pixel,
} XcmsColor; [* Xcms Color Structure */

Because the color specification can be encoded for the various color spaces, encoding for the spec
member is identified by the format member, which is of type XcmsColorFormat. The following
macros define standard formats.

#define XcmsUndefinedFormat 0x00000000

#define XcmsCIEXYZFormat 0x00000001 /* CIE XYZ */

#define XcmsCIEuvYFormat 0x00000002 /* CIE uv'yY *

#define XcmsCIExyYFormat 0x00000003 [* CIE xyY */

#define XcmsCIELabFormat 0x00000004 [* CIE L*a*b* */

#define XcmsCIELuvFormat 0x00000005 [* CIE L*u*v* */

#define XcmsTekHVCFormat 0x00000006 /* TekHVC */

#define XcmsRGBFormat 0x80000000 /* RGB Device */
#define XcmsRGBiFormat 0x80000001 /* RGB Intensity */

Window Management (X11R5): Xlib - C Language Binding 89

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Color Structures

Color Management Functions

Note that formats for device-independent color spaces are distinguishable from those for
device-dependent spaces by the 32nd bit. If this bit is set, it indicates that the color specification
is in a device-dependent form; otherwise, it is in a device-independent form. If the 31st bit is set,
this indicates that the color space has been added to Xlib at run-time (see Section 7.12.4). The
format value for a color space added at run-time may be different each time the program is
executed. If references to such a color space must be made outside the client (for example,
storing a color specification in a file), then reference should be made by color space string prefix
(see XemsFormatOfPrefix and XcmsPrefixOfFormat).

Data types that describe the color specification encoding for the various color spaces are defined

as follows:

typedef double XcmsFloat;

typedef struct {
unsigned short red;
unsigned short green;
unsigned short blue;
} XcmsRGB,;

typedef struct {
XcmsFloat red;
XcmsFloat green;
XcmsFloat blue;
} XcmsRGBi;

typedef struct {
XcmsFloat X;
XcmsFloat Y;
XcmsFloat Z
} XecmsCIEXYZ;

typedef struct {
XcmsFloat u_prime;
XcmsFloat v_prime;
XcmsFloat Y;

} XcmsCIEuvY;

typedef struct {
XcmsFloat x;
XcmsFloat y;
XcmsFloat Y;
} XcmsCIEXyY;

typedef struct {
XcmsFloat L_star;
XcmsFloat a_star;
XcmsFloat b_star;
} XcmsCIELab;

typedef struct {
XcmsFloat L_star;
XcmsFloat u_star;
XcmsFloat v_star;
} XcmsCIELuy;

90
0 1995, X/Open Company Limited.

/* 0x0000 to Oxffff */
[* 0x0000 to Oxffff */
/* 0x0000 to Oxffff */

/* RGB Device */

/¥ 0.0 to 1.0 */
/* 0.0 to 1.0 ¥/
/* 0.0 to 1.0 */
/* RGB Intensity */

/* 0.0 to 1.0 ¥/

I* CIE XYZ *

/* 0.0 to "0.6 */
/* 0.0 to "0.6 */
/* 0.0 to 1.0 ¥/
I* CIE uv'Y ¥/

/* 0.0 to ~.75 */
/* 0.0 to ~.85 */
/* 0.0 to 1.0 */
/¥ CIE xyY *

/* 0.0 to 100.0 */

/* CIE L*a*b* */

/* 0.0 to 100.0 */

[* CIE L*u*v* */

X/0pen CAE Specification
Stamp: X XXX XXXXXXXXXXXX XXX XXXXX

Color Management Functions Color Structures

typedef struct {

XcmsFloat H; /* 0.0 to 360.0 */

XcmsFloat V; /* 0.0 to 100.0 */

XcmsFloat C; /* 0.0 to 100.0 */
} XcmsTekHVC; [* TekHVC */

typedef struct {
XcmsFloat padoO;
XcmsFloat padl;
XcmsFloat pad2;
XcmsFloat pad3;
} XcmsPad; /* four doubles */

The device-dependent formats provided allow color specification in:
+ RGB Intensity (XcmsRGBI).

- Red, green and blue linear intensity values, floating point values from 0.0 to 1.0, where 1.0
indicates full intensity, 0.5 half intensity, and so on.

« RGB Device (XcmsRGB).

- Red, green and blue values appropriate for the specified output device. XcmsRGB values are
of type unsigned short, scaled from 0 to 65535 inclusive, and are interchangeable with values
the red, green and blue values in an XColor structure.

It is important to note that RGB Intensity values are not gamma corrected values. In contrast,
RGB Device values generated as a result of converting color specifications are always gamma
corrected, and RGB Device values acquired as a result of querying a colormap or passed in by
the client are assumed by Xlib to be gamma corrected. The term “RGB value” in this manual
always refers to an RGB Device value.

Window Management (X11R5): Xlib - C Language Binding 91
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Color Strings Color Management Functions

1.2

7.2.1

92

Color Strings

Xlib provides a mechanism for using string names for colors. A color string may either contain
an abstract color name or a numerical color specification. Color strings are case-insensitive.

Color strings are used in the following functions:
+ XAllocNamedColor

+ XcmsAllocNamedColor

« XLookupColor

« XcmsLookupColor

« XParseColor

+ XStoreNamedColor.

Xlib supports the use of abstract color names; for example, “red”, “‘blue”. A value for this
abstract name is obtained by searching one or more color name databases. Xlib first searches
zero or more client-side databases; the number, location and content of these databases is
implementation-dependent, and might depend on the current locale. If the name is not found,
Xlib then looks for the color in the X server’s database. If the color name is not in the Host
Portable Character Encoding the result is implementation-dependent.

A numerical color specification consists of a color space name and a set of values in the
following syntax:

<color_space_name>:<value>/.../<value>
The following are examples of valid color strings.

"CIEXYZ:0.3227/0.28133/0.2493"
"RGBI:1.0/0.0/0.0"

"rgb:00/ff/00"
"CIELuv:50.0/0.0/0.0"

The syntax and semantics of numerical specifications are given for each standard color space in
sections below.

RGB Device String Specification

An RGB Device specification is identified by the prefix “‘rgb:” and conforms to the following
syntax:

rgb: <red>/<green>/<blue>
<red>, <green>, <blue> := h | hh | hhh | hhhh
h := single hexadecimal digits (case insignificant)

Note that h indicates the value scaled in 4 bits, hh the value scaled in 8 bits, hhh the value scaled
in 12 bits, and hhhh the value scaled in 16 bits, respectively.

Typical examples are “‘rgh:ea/75/52"" and *‘rgh:ccc/320/320"", but mixed numbers of hex digits
(“‘rgb:ff/a5/0" and ‘‘rgh:ccc/32/0") are also allowed.

For backward compatibility, an older syntax for RGB Device is supported, but its continued use
is not encouraged. The syntax is an initial sharp sign character followed by a numeric
specification, in one of the following formats:

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Color Management Functions Color Strings

7.2.2

7.2.3

#RGB (4 bits each)
#RRGGBB (8 bits each)
#RRRGGGBBB (12 bits each)

#RRRRGGGGBBBB (16 bits each)

The R, G and B represent single hexadecimal digits. When fewer than 16 bits each are specified,
they represent the most-significant bits of the value (unlike the “‘rgh:” syntax, in which values
are scaled). For example, #3a7 is the same as #3000a0007000.

RGB Intensity String Specification

An RGB intensity specification is identified by the prefix “rgbi:”” and conforms to the following
syntax:

rgbi: <red>/<green>/<blue>

Note that red, green and blue are floating point values between 0.0 and 1.0, inclusive. The input
format for these values is an optional sign, a string of numbers possibly containing a decimal
point, and an optional exponent field containing an E or e followed by a possibly signed integer
string.

Device-independent String Specifications
The standard device-independent string specifications have the following syntax:

CIEXYZ: <X>/<Y>/<Z>
CIEuvY: <u>/<v>/<Y>
CIEXYY: <x>/<y>/<Y>
CIELab: <L>/<a>/
CIELuv: <L>/<u>/<v>
TekHVC: <H>/<V>/<C>

All of the values (C, H, V, X, Y, Z, a, b, u, v, y, X) are floating point values. The syntax for these
values is an optional ‘+’ or '=’ sign, a string of digits possibly containing a decimal point, and an
optional exponent field consisting of an ‘E’ or ‘e’ followed by an optional ‘+’ or ‘-’ followed by a
string of digits.

Window Management (X11R5): Xlib - C Language Binding 93
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Color Conversion Contexts and Gamut Mapping Color Management Functions

7.3

94

Color Conversion Contexts and Gamut Mapping

When Xlib converts device-independent color specifications into device-dependent
specifications and vice versa, it uses knowledge about the color limitations of the screen
hardware. This information, typically called the device profile, is available in a Color
Conversion Context (hereafter referred to as the CCC).

Because a specified color may be outside the color gamut of the target screen and the white point
associated with the color specification may differ from the white point inherent to the screen,
Xlib applies gamut mapping when certain conditions are encountered:

- Gamut compression when conversion of device-independent color specifications to device-
dependent color specification results in a color out of the target screen’s gamut.

- White adjustment when the inherent white point of the screen differs from the white point
assumed by the client.

Gamut handling methods are stored as callbacks in the CCC, which, in turn, are used by the
color space conversion routines. Client data is also stored in the CCC for each callback. The
CCC also contains the white point the client assumes to be associated with color specifications
(that is, the Client White Point). The client can specify the gamut handling callbacks and client
data, as well the Client White Point. Note that Xlib does not preclude the X client from
performing other forms of gamut handling (for example, gamut expansion); however, direct
support for gamut handling other than white adjustment and gamut compression is not
provided by Xlib.

Associated with each colormap is an initial CCC transparently generated by Xlib. Therefore,
when you specify a colormap as an argument to an Xlib function, you are indirectly specifying a
CCC. There is a default CCC associated with each screen. Newly created CCCs inherit
attributes from the default CCC, so the default CCC attributes can be modified to affect new
CCCs.

Xcms functions in which gamut mapping can occur return Status, and have specific status
values defined for them:

- XcmsFailure indicates that the function failed.

« XcmsSuccess indicates that the function succeeded. In addition, if the function performed any
color conversion, the color (or colors) did not need to be compressed.

« XcmsSuccessWithCompression indicates the function performed color conversion, and at least
one of the colors needed to be compressed. The gamut compression method is determined
by the gamut compression procedure in the CCC that is specified directly as a function
argument, or in the CCC indirectly specified by means of the colormap argument.

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Color Management Functions Creating, Copying and Destroying Colormaps

7.4 Creating, Copying and Destroying Colormaps
To create a colormap for a screen, use XCreateColormap.

Colormap XCreateColormap(display , w visual , alloc)
Display * display ;

Window w
Visual * visual ;
int alloc ;
display Specifies the connection to the X server.
w Specifies the window on whose screen you want to create a colormap.
visual Specifies a visual type supported on the screen. If the visual type is not one
supported by the screen, a BadMatch error results.
alloc Specifies the colormap entries to be allocated. You can pass AllocNone or
AllocAll.

The XCreateColormap function creates a colormap of the specified visual type for the screen on
which the specified window resides and returns the colormap ID associated with it. Note that
the specified window is only used to determine the screen.

The initial values of the colormap entries are undefined for the visual classes GrayScale,
PseudoColor and DirectColor. For StaticGray, StaticColor and TrueColor, the entries have defined
values, but those values are specific to the visual and are not defined by X. For StaticGray,
StaticColor and TrueColor, alloc must be AllocNone, or a BadMatch error results. For the other
visual classes, if alloc is AllocNone, the colormap initially has no allocated entries, and clients can
allocate them. For information about the visual types, see Section 4.1.

If alloc is AllocAll, the entire colormap is allocated writable. The initial values of all allocated
entries are undefined. For GrayScale and PseudoColor, the effect is as if an XAllocColorCells call
returned all pixel values from zero to N -1, where N is the colormap entries value in the
specified visual. For DirectColor, the effect is as if an XAllocColorPlanes call returned a pixel value
of zero and red_mask, green_mask and blue_mask values containing the same bits as the
corresponding masks in the specified visual. However, in all cases, none of these entries can be
freed by using XFreeColors.

XCreateColormap can generate BadAlloc, BadMatch, BadValue and BadWindow errors.

To create a new colormap when the allocation out of a previously shared colormap has failed
because of resource exhaustion, use XCopyColormapAndFree.

Colormap XCopyColormapAndFree(display , colormap)
Display * display ;
Colormap colormap ;

display Specifies the connection to the X server.
colormap Specifies the colormap.

The XCopyColormapAndFree function creates a colormap of the same visual type and for the same
screen as the specified colormap and returns the new colormap ID. It also moves all of the
client’s existing allocation from the specified colormap to the new colormap with their color
values intact and their read-only or writable characteristics intact and frees those entries in the
specified colormap. Color values in other entries in the new colormap are undefined. If the
specified colormap was created by the client with alloc set to AllocAll, the new colormap is also
created with AllocAll, all color values for all entries are copied from the specified colormap, and
then all entries in the specified colormap are freed. If the specified colormap was not created by

Window Management (X11R5): Xlib - C Language Binding 95
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Creating, Copying and Destroying Colormaps Color Management Functions

the client with AllocAll, the allocations to be moved are all those pixels and planes that have
been allocated by the client using XAllocColor, XAllocNamedColor, XAllocColorCells or
XAllocColorPlanes and that have not been freed since they were allocated.

XCopyColormapAndFree can generate BadAlloc and BadColor errors.
To destroy a colormap, use XFreeColormap.
XFreeColormap(display , colormap)

Display * display ;
Colormap colormap ;

display Specifies the connection to the X server.
colormap Specifies the colormap that you want to destroy.

The XFreeColormap function deletes the association between the colormap resource ID and the
colormap and frees the colormap storage. However, this function has no effect on the default
colormap for a screen. If the specified colormap is an installed map for a screen, it is uninstalled
(see XUninstallColormap). If the specified colormap is defined as the colormap for a window (by
XCreateWindow, XSetWindowColormap or XChangeWindowAttributes), XFreeColormap changes the
colormap associated with the window to None and generates a ColormapNotify event. X does not
define the colors displayed for a window with a colormap of None.

XFreeColormap can generate a BadColor error.

96 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Color Management Functions Mapping Color Names to Values

7.5 Mapping Color Names to Values
To map a color name to an RGB value, use XLookupColor .

Status XLookupColor(display , colormap , color_name
exact_def return , Screen_def _return)
Display * display ;
Colormap colormap ;
char * color_name ;

XColor * exact _def _return , * screen_def _return ;
display Specifies the connection to the X server.
colormap Specifies the colormap.
color_name Specifies the color name string (for example, red) whose color definition

structure you want returned.
exact_def return Returns the exact RGB values.
screen_def return Returns the closest RGB values provided by the hardware.

The XLookupColor function looks up the string name of a color with respect to the screen
associated with the specified colormap. It returns both the exact color values and the closest
values provided by the screen with respect to the visual type of the specified colormap. If the
color name is not in the Host Portable Character Encoding the result is implementation-
dependent. Use of upper case or lower case does not matter. XLookupColor returns non-zero if
the name is resolved, otherwise it returns zero.

XLookupColor can generate a BadColor error.
To map a color name to just the exact RGB value, use XParseColor.
Status XParseColor(display , colormap , spec, exact def return)
Display * display ;
Colormap colormap ;

char * spec;
XColor * exact_def _return ;

display Specifies the connection to the X server.
colormap Specifies the colormap.
spec Specifies the color name string; case is ignored.

exact_def return Returns the exact color value for later use and sets the DoRed, DoGreen and
DoBlue flags.

The XParseColor function looks up the string name of a color with respect to the screen
associated with the specified colormap. It returns the exact color value. If the color name is not
in the Host Portable Character Encoding the result is implementation-dependent. Use of upper
case or lower case does not matter. XParseColor returns non-zero if the name is resolved,
otherwise it returns zero.

XParseColor can generate a BadColor error.

To map a color name to a value in an arbitrary color space, use XcmsLookupColor.

Window Management (X11R5): Xlib - C Language Binding 97
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Mapping Color Names to Values Color Management Functions

98

Status XcmsLookupColor(display , colormap , color_string ,
color_exact _return , color_screen_return , result format)
Display * display ;
Colormap colormap ;
char * color_string ;
XcmsColor * color_exact _return , * color_screen_return ;
XcmsColorFormat — result_format ;

display Specifies the connection to the X server.
colormap Specifies the colormap.
color_string Specifies the color string.

color_exact_return Returns the color specification parsed from the color string or parsed from the
corresponding string found in a color name database.

color_screen_return
Returns the color that can be reproduced on the Screen.

result_format Specifies the color format for the returned color specifications
(color_screen_return and color_exact return arguments). If format is
XcmsUndefinedFormat and the color string contains a numerical color
specification, the specification is returned in the format used in that numerical
color specification. If format is XcmsUndefinedFormat and the color string
contains a color name, the specification is returned in the format used to store
the color in the database.

The XcmsLookupColor function looks up the string name of a color with respect to the screen
associated with the specified colormap. It returns both the exact color values and the closest
values provided by the screen with respect to the visual type of the specified colormap. The
values are returned in the format specified by result_format. If the color name is not in the Host
Portable Character Encoding the result is implementation-dependent. Use of upper case or
lower case does not matter. XcmsLookupColor returns XcmsSuccess — or
XcmsSuccessWithCompression if the name is resolved, otherwise it returns XcmsFailure. If
XcmsSuccessWithCompression is resturned, then the color specification in color_screen_return is the
result of gamut compression.

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Color Management Functions Allocating and Freeing Color Cells

7.6 Allocating and Freeing Color Cells

There are two ways of allocating color cells: explicitly as read-only entries, one pixel value at a
time, or read/write, where you can allocate a number of color cells and planes simultaneously.
A read-only cell has its RGB value set by the server. Read/write cells do not have defined colors
initially; functions described in the next section must be used to store values into them.
Although it is possible for any client to store values into a read/write cell allocated by another
client, read/write cells normally should be considered private to the client that allocated them.

Read-only colormap cells are shared among clients. The server counts each allocation and free
of the cell by clients. When the last client frees a shared cell, the cell is finally deallocated. Note
that if a single client allocates the same read-only cell multiple times, the server counts each such
allocation, not just the first one.

To allocate a read-only color cell with an RGB value, use XAllocColor .
Status XAllocColor(display , colormap , screen_in_out)
Display * display ;

Colormap colormap ;
XColor * screen_in out ;

display Specifies the connection to the X server.
colormap Specifies the colormap.
screen_in_out Specifies and returns the values actually used in the colormap.

The XAllocColor function allocates a read-only colormap entry corresponding to the closest RGB
value supported by the hardware. XAllocColor returns the pixel value of the color closest to the
specified RGB elements supported by the hardware and returns the RGB value actually used.
The corresponding colormap cell is read-only. In addition, XAllocColor returns non-zero if it
succeeded or zero if it failed. Multiple clients that request the same effective RGB value can be
assigned the same read-only entry, thus allowing entries to be shared. When the last client
deallocates a shared cell, it is deallocated. XAllocColor does not use or affect the flags in the
XColor structure.

XAllocColor can generate a BadColor error.
To allocate a read-only color cell with a color in arbitrary format, use XcmsAllocColor.
Status XcmsAllocColor(display , colormap , color_in_out , result format)
Display * display ;
Colormap colormap ;

XcmsColor * color_in_out
XcmsColorFormat — result_format ;

display Specifies the connection to the X server.
colormap Specifies the colormap.
color_in_out Specifies the color to allocate and returns the pixel and color that is actually

used in the colormap.
result_format Specifies the color format for the returned color specification.

The XcmsAllocColor function is similar to XAllocColor except the color can be specified in any
format. The XcmsAllocColor function ultimately calls XAllocColor to allocate a read-only color
cell (colormap entry) with the specified color. XcmsAllocColor first converts the color specified to
an RGB value and then passes this to XAllocColor. XcmsAllocColor returns the pixel value of the
color cell and the color specification actually allocated. This returned color specification is the

Window Management (X11R5): Xlib - C Language Binding 99
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Allocating and Freeing Color Cells Color Management Functions

result of converting the RGB value returned by XAllocColor into the format specified with the
result format argument. If there is no interest in a returned color specification, unnecessary
computation can be bypassed if result format is set to XcmsRGBFormat. The corresponding
colormap cell is read-only. If this routine returns XcmsFailure, the color_in_out color
specification is left unchanged.

XcmsAllocColor can generate a BadColor error.

To allocate a read-only color cell using a color name, and return the closest color supported by
the hardware in RGB format, use XAllocNamedColor.

Status XAllocNamedColor(display , colormap , color_name
screen_def _return , exact_def return)
Display * display ;
Colormap colormap ;
char * color_name ;

XColor * screen_def return , * exact _def return ;
display Specifies the connection to the X server.
colormap Specifies the colormap.
color_name Specifies the color name string (for example, red) whose color definition

structure you want returned.
screen_def return Returns the closest RGB values provided by the hardware.
exact_def return Returns the exact RGB values.

The XAllocNamedColor function looks up the named color with respect to the screen that is
associated with the specified colormap. It returns both the exact database definition and the
closest color supported by the screen. The allocated color cell is read-only. The pixel value is
returned in screen_def _return. If the color name is not in the Host Portable Character Encoding
the result is implementation-dependent. Use of upper case or lower case does not matter.
XLookupColor returns non-zero if a cell is allocated, otherwise it returns zero.

XAllocNamedColor can generate a BadColor error.

To allocate a read-only color cell using a color name, and return the closest color supported by
the hardware in an arbitrary format, use XcmsAllocNamedColor .

Status XcmsAllocNamedColor(display , colormap , color_string ,
result_format , color_screen_return , color_exact _return)

Display * display ;

Colormap colormap ;

char * color_string ;

XcmsColorFormat — result_format ;

XcmsColor * color_screen_return ;

XcmsColor * color_exact _return ;

display Specifies the connection to the X server.

colormap Specifies the colormap.

color_string Specifies the color string whose color definition structure is to be returned.
result_format Specifies the color format for the returned color specifications

(color_screen_return and color_exact return arguments). If format is
XcmsUndefinedFormat and the color string contains a numerical color
specification, the specification is returned in the format used in that numerical

100 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Color Management Functions Allocating and Freeing Color Cells

color specification. If format is XcmsUndefinedFormat and the color string
contains a color name, the specification is returned in the format used to store
the color in the database.

color_screen_return
Returns the pixel value of the color cell and color specification that actually is
stored for that cell.

color_exact_return Returns the color specification parsed from the color string or parsed from the
corresponding string found in a color name database.

The XcmsAllocNamedColor function is similar to XAllocNamedColor except the color returned can
be in any format specified. This function ultimately calls XAllocColor to allocate a read-only
color cell with the color specified by a color string. The color string is parsed into an XcmsColor
structure (see XcmsLookupColor), converted to an RGB value, then finally passed to the
XAllocColor. If the color name is not in the Host Portable Character Encoding the result is
implementation-dependent. Use of upper case or lower case does not matter.

This function returns both the color specification as a result of parsing (exact specification) and
the actual color specification stored (screen specification). This screen specification is the result
of converting the RGB value returned by XAllocColor into the format specified in result_format.
If there is no interest in a returned color specification, unnecessary computation can be bypassed
if result_format is set to XcmsRGBFormat.

XcmsAllocNamedColor can generate a BadColor error.

To allocate read/write color cell and color plane combinations for a PseudoColor model, use
XAllocColorCells.

Status XAllocColorCells(display , colormap , contig
plane_masks _return , nplanes , pixels_return , hpixels)
Display * display ;
Colormap colormap ;
Bool contig ;
unsigned long plane_masks_return [];
unsigned int nplanes ;
unsigned long pixels_return [0;
unsigned int npixels

display Specifies the connection to the X server.

colormap Specifies the colormap.

contig Specifies a Boolean value that indicates whether the planes must be
contiguous.

plane_mask_return Returns an array of plane masks.

nplanes Specifies the number of plane masks that are to be returned in the plane masks
array.

pixels_return Returns an array of pixel values.

npixels Specifies the number of pixel values that are to be returned in the

pixels_return array.

The XAllocColorCells function allocates read/write color cells. The number of colors must be
positive and the number of planes non-negative, or a BadValue error results. If ncolors and
nplanes are requested, then ncolors pixels and nplane plane masks are returned. No mask will
have any bits set to 1 in common with any other mask or with any of the pixels. By ORing

Window Management (X11R5): Xlib - C Language Binding 101
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Allocating and Freeing Color Cells Color Management Functions

together each pixel with zero or more masks, ncolors * 2"°2"%s distinct pixels can be produced.
All of these are allocated writable by the request. For GrayScale or PseudoColor, each mask has
exactly one bit set to 1. For DirectColor, each has exactly three bits set to 1. If contig is True and if
all masks are ORed together, a single contiguous set of bits set to 1 will be formed for GrayScale
or PseudoColor and three contiguous sets of bits set to 1 (one within each pixel subfield) for
DirectColor. The RGB values of the allocated entries are undefined. XAllocColorCells returns
non-zero if it succeeded or zero if it failed.

XAllocColorCells can generate BadColor and BadValue errors.

To allocate read/write color resources for a DirectColor model, use XAllocColorPlanes.

Status XAllocColorPlanes(display , colormap , contig
pixels_return , hcolors , nreds , ngreens ,
nblues , rmask return , gmask return , bmask return)

Display * display ;

Colormap colormap ;

Bool contig ;

unsigned long pixels_return [0;

int ncolors ;

int nreds , ngreens , nblues ;

unsigned long * rmask return , * gmask return , * bmask return ;

display Specifies the connection to the X server.

colormap Specifies the colormap.

contig Specifies a Boolean value that indicates whether the planes must be
contiguous.

pixels_return Returns an array of pixel values. XAllocColorPlanes returns the pixel values in
this array.

ncolors Specifies the number of pixel values that are to be returned in the
pixels_return array.

nreds

ngreens

nblues

Specify the number of red, green and blue planes. The value you pass must be
non-negative.

rmask_return
gmask_return
bmask_return Return bit masks for the red, green and blue planes.

The specified ncolors must be positive; and nreds, ngreens and nblues must be non-negative, or
a BadValue error results. If ncolors colors, nreds reds, ngreens greens and nblues blues are
requested, ncolors pixels are returned; and the masks have nreds, ngreens and nblues bits set to
1, respectively. If contig is True, each mask will have a contiguous set of bits set to 1. No mask
will have any bits set to 1 in common with any other mask or with any of the pixels. For
DirectColor, each mask will lie within the corresponding pixel subfield. By ORing together
subsets of masks with each pixel value, ncolors * 2(eds+ngreens+nblues) qjstinct pixel values can be
produced. All of these are allocated by the request. However, in the colormap, there are only
ncolors * 2" jndependent red entries, ncolors * 29" independent green entries, and ncolors *
2"ues jndependent blue entries. This is true even for PseudoColor. When the colormap entry of a
pixel value is changed (using XStoreColors, XStoreColor or XStoreNamedColor), the pixel is
decomposed according to the masks, and the corresponding independent entries are updated.

102 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Color Management Functions Allocating and Freeing Color Cells

XAllocColorPlanes returns non-zero if it succeeded or zero if it failed.
XAllocColorPlanes can generate BadColor and BadValue errors.
To free colormap cells, use XFreeColors.

XFreeColors(display , colormap , pixels , npixels , planes)
Display * display ;
Colormap colormap ;
unsigned long pixels];
int npixels ;
unsigned long planes ;

display Specifies the connection to the X server.

colormap Specifies the colormap.

pixels Specifies an array of pixel values that map to the cells in the specified
colormap.

npixels Specifies the number of pixels.

planes Specifies the planes you want to free.

The XFreeColors function frees the cells represented by pixels whose values are in the pixels
array. The planes argument should not have any bits set to 1 in common with any of the pixels.
The set of all pixels is produced by ORing together subsets of the planes argument with the
pixels. The request frees all of these pixels that were allocated by the client (using XAllocColor,
XAllocNamedColor, XAllocColorCells and XAllocColorPlanes). Note that freeing an individual
pixel obtained from XAllocColorPlanes may not actually allow it to be reused until all of its
related pixels are also freed. Similarly, a read-only entry is not actually freed until it has been
freed by all clients, and if a client allocates the same read-only entry multiple times, it must free
the entry that many times before the entry is actually freed.

All specified pixels that are allocated by the client in the colormap are freed, even if one or more
pixels produce an error. If a specified pixel is not a valid index into the colormap, a BadValue
error results. If a specified pixel is not allocated by the client (that is, is unallocated or is only
allocated by another client), or if the colormap was created with all entries writable (by passing
AllocAll to XCreateColormap), a BadAccess error results. If more than one pixel is in error, the one
that gets reported is arbitrary.

XFreeColors can generate BadAccess, BadColor and BadValue errors.

Window Management (X11R5): Xlib - C Language Binding 103
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Modifying and Querying Colormap Cells Color Management Functions

7.7 Modifying and Querying Colormap Cells
To store an RGB value in a single colormap cell, use XStoreColor.
XStoreColor(display , colormap , color)
Display * display ;
Colormap colormap ;
XColor * color ;

display Specifies the connection to the X server.
colormap Specifies the colormap.
color Specifies the pixel and RGB values.

The XStoreColor function changes the colormap entry of the pixel value specified in the pixel
member of the XColor structure. You specified this value in the pixel member of the XColor
structure. This pixel value must be a read/write cell and a valid index into the colormap. If a
specified pixel is not a valid index into the colormap, a BadValue error results. XStoreColor also
changes the red, green and/or blue color components. You specify which color components are
to be changed by setting DoRed, DoGreen and/or DoBlue in the flags member of the XColor
structure. If the colormap is an installed map for its screen, the changes are visible immediately.

XStoreColor can generate BadAccess, BadColor and BadValue errors.
To store multiple RGB values into multiple colormap cells, use XStoreColors.

XStoreColors(display , colormap , color , ncolors)
Display * display ;
Colormap colormap ;
XColor color [];

int ncolors ;
display Specifies the connection to the X server.
colormap Specifies the colormap.
color Specifies an array of color definition structures to be stored.
ncolors Specifies the number of XColor structures in the color definition array.

The XStoreColors function changes the colormap entries of the pixel values specified in the pixel
members of the XColor structures. You specify which color components are to be changed by
setting DoRed, DoGreen and/or DoBlue in the flags member of the XColor structures. If the
colormap is an installed map for its screen, the changes are visible immediately. XStoreColors
changes the specified pixels if they are allocated writable in the colormap by any client, even if
one or more pixels generates an error. If a specified pixel is not a valid index into the colormap,
a BadValue error results. If a specified pixel either is unallocated or is allocated read-only, a
BadAccess error results. If more than one pixel is in error, the one that gets reported is arbitrary.

XStoreColors can generate BadAccess, BadColor and BadValue errors.
To store a color of arbitrary format in a single colormap cell, use XcmsStoreColor.

Status XcmsStoreColor(display , colormap , color)
Display * display ;
Colormap colormap ;
XcmsColor * color ;

display Specifies the connection to the X server.

104 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Color Management Functions Modifying and Querying Colormap Cells

colormap Specifies the colormap.

color Specifies the color cell and the color to store. Values specified in this
XcmsColor structure remain unchanged upon return.

The XcmsStoreColor function converts the color specified in the XcmsColor structure into RGB
values and then uses this RGB specification in an XColor structure, whose three flags (DoRed,
DoGreen and DoBlue) are set, in a call to XStoreColor to change the color cell specified by the pixel
member of the XcmsColor structure. This pixel value must be a valid index for the specified
colormap, and the color cell specified by the pixel value must be a read/write cell. If the pixel
value is not a valid index, a BadValue error results. If the color cell is unallocated or is allocated
read-only, a BadAccess error results. If the colormap is an installed map for its screen, the
changes are visible immediately.

Note that XStoreColor has no return value; therefore, a XcmsSuccess return value from this
function indicates that the conversion to RGB succeeded and the call to XStoreColor was made.
To obtain the actual color stored, use XcmsQueryColor. Due to the screen’s hardware limitations
or gamut compression, the color stored in the colormap may not be identical to the color
specified.

XcmsStoreColor can generate BadAccess, BadColor and BadValue errors.
To store multiple colors of arbitrary format into multiple colormap cells, use XcmsStoreColors.

Status XcmsStoreColors(display , colormap , colors
ncolors , compression flags return)
Display * display ;
Colormap colormap ;
XcmsColor colors];

int ncolors ;
Bool compression_flags return [0;
display Specifies the connection to the X server.
colormap Specifies the colormap.
colors Specifies the color specification array of XcmsColor structures, each specifying

a color cell and the color to store in that cell. Values specified in the array
remain unchanged upon return.

ncolors Specifies the number of XcmsColor structures in the color specification array.

compression_flags_return
Specifies an array of Boolean values for returning compression status. If a
non-NULL pointer is supplied, each element of the array is set to True if the
corresponding color was compressed, and False otherwise. Pass NULL if the
compression status is not useful.

The XcmsStoreColors function converts the colors specified in the array of XcmsColor structures
into RGB values and then uses these RGB specifications in an XColor structures, whose three
flags (DoRed, DoGreen and DoBlue) are set, in a call to XStoreColors to change the color cells
specified by the pixel member of the corresponding XcmsColor structure. Each pixel value must
be a valid index for the specified colormap, and the color cell specified by each pixel value must
be a read/write cell. If a pixel value is not a valid index, a BadValue error results. If a color cell is
unallocated or is allocated read-only, a BadAccess error results. If more than one pixel is in error,
the one that gets reported is arbitrary. If the colormap is an installed map for its screen, the
changes are visible immediately.

Window Management (X11R5): Xlib - C Language Binding 105
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Modifying and Querying Colormap Cells Color Management Functions

106

Note that XStoreColors has no return value; therefore, a XcmsSuccess return value from this
function indicates that conversions to RGB succeeded and the call to XStoreColors was made. To
obtain the actual colors stored, use XcmsQueryColors. Due to the screen’s hardware limitations
or gamut compression, the colors stored in the colormap may not be identical to the colors
specified.

XcmsStoreColors can generate BadAccess, BadColor and BadValue errors.
To store a color specified by name in a single colormap cell, use XStoreNamedColor.

XStoreNamedColor(display , colormap , color , pixel , flags)
Display * display ;
Colormap colormap ;
char * color ;
unsigned long pixel ;

int flags ;
display Specifies the connection to the X server.
colormap Specifies the colormap.
color Specifies the color name string (for example, red).
pixel Specifies the entry in the colormap.
flags Specifies which red, green and blue components are set.

The XStoreNamedColor function looks up the named color with respect to the screen associated
with the colormap and stores the result in the specified colormap. The pixel argument
determines the entry in the colormap. The flags argument determines which of the red, green
and blue components are set. You can set this member to the bitwise inclusive OR of the bits
DoRed, DoGreen and DoBlue. If the color name is not in the Host Portable Character Encoding
the result is implementation-dependent. Use of upper case or lower case does not matter. If the
specified pixel is not a valid index into the colormap, a BadValue error results. If the specified
pixel either is unallocated or is allocated read-only, a BadAccess error results.

XStoreNamedColor can generate BadAccess, BadColor, BadName and BadValue errors.

The XQueryColor and XQueryColors functions take pixel values in the pixel member of XColor
structures, and store in the structures the RGB values for those pixels from the specified
colormap. The values returned for an unallocated entry are undefined. These functions also set
the flags member in the XColor structure to all three colors. If a pixel is not a valid index into the
specified colormap, a BadValue error results. If more than one pixel is in error, the one that gets
reported is arbitrary.

To query the RGB value of a single colormap cell, use XQueryColor.

XQueryColor(display , colormap , def in_out)
Display * display ;
Colormap colormap ;
XColor * def in_out ;

display Specifies the connection to the X server.
colormap Specifies the colormap.
def_in_out Specifies and returns the RGB values for the pixel specified in the structure.

The XQueryColor function returns the current RGB value for the pixel in the XColor structure and
sets the DoRed, DoGreen and DoBlue flags.

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Color Management Functions Modifying and Querying Colormap Cells

XQueryColor can generate BadColor and BadValue errors.
To query the RGB values of multiple colormap cells, use XQueryColors.
XQueryColors(display , colormap , defs in_out , ncolors)
Display * display ;
Colormap colormap ;
XColor defs in_out [];

int ncolors ;
display Specifies the connection to the X server.
colormap Specifies the colormap.
defs_in_out Specifies and returns an array of color definition structures for the pixel

specified in the structure.
ncolors Specifies the number of XColor structures in the color definition array.

The XQueryColors function returns the RGB value for each pixel in each XColor structure, and
sets the DoRed, DoGreen and DoBlue flags in each structure.

XQueryColors can generate BadColor and BadValue errors.
To query the color of a single colormap cell in an arbitrary format, use XcmsQueryColor.
Status XcmsQueryColor(display , colormap , color_in_out , result format)
Display * display ;
Colormap colormap ;

XcmsColor * color_in_out
XcmsColorFormat — result_format ;

display Specifies the connection to the X server.
colormap Specifies the colormap.
color_in_out Specifies the pixel member that indicates the color cell to query, and the color

specification stored for the color cell is returned in this XcmsColor structure.
result_format Specifies the color format for the returned color specification.

The XcmsQueryColor function obtains the RGB value for the pixel value in the pixel member of
the specified XcmsColor structure, and then converts the value to the target format as specified
by the result_format argument. If the pixel is not a valid index into the specified colormap, a
BadValue error results.

XcmsQueryColor can generate BadColor and BadValue errors.
To query the color of multiple colormap cells in an arbitrary format, use XcmsQueryColors.

Status XcmsQueryColors(display , colormap , colors_in out
ncolors , result format)
Display * display ;
Colormap colormap ;
XcmsColor colors _in_out [];
unsigned int ncolors ;
XcmsColorFormat — result_format ;

display Specifies the connection to the X server.
colormap Specifies the colormap.
Window Management (X11R5): Xlib - C Language Binding 107

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Modifying and Querying Colormap Cells Color Management Functions

colors_in_out Specifies an array of XcmsColor structures, each pixel member indicating the
color cell to query. The color specifications for the color cells are returned in
these structures.

ncolors Specifies the number of XcmsColor structures in the color specification array.
result_format Specifies the color format for the returned color specification.

The XcmsQueryColors function obtains the RGB values for pixel values in the pixel members of
XcmsColor structures, and then converts the values to the target format as specified by the
result format argument. If a pixel is not a valid index into the specified colormap, a BadValue
error results. If more than one pixel is in error, the one that gets reported is arbitrary.

XcmsQueryColors can generate BadColor and BadValue errors.

108 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Color Management Functions Color Conversion Context Functions

7.8 Color Conversion Context Functions
This section describes functions to create, modify and query Color Conversion Contexts.

Associated with each colormap is an initial CCC transparently generated by Xlib. Therefore,
when you specify a colormap as an argument to a function, you are indirectly specifying a CCC.
The CCC attributes that can be modified by the X client are:

+ Client White Point
« gamut compression procedure and client data
- white point adjustment procedure and client data.

The initial values for these attributes are implementation-specific. The CCC attributes for
subsequently created CCCs can be defined by changing the CCC attributes of the default CCC.
There is a default CCC associated with each screen.

7.8.1 Getting and Setting the Color Conversion Context of a Colormap
To obtain the CCC associated with a colormap, use XemsCCCOfColormap .

XecmsCCC XcmsCCCofColormap(display , colormap)
Display * display ;
Colormap colormap ;

display Specifies the connection to the X server.
colormap Specifies the colormap.

The XcmsCCCofColormap function returns the CCC associated with the specified colormap.
Once obtained, the CCC attributes can be queried or modified. Unless the CCC associated with
the specified colormap is changed with XcmsSetCCCOfColormap, this CCC is used when the
specified colormap is used as an argument to color functions.

To change the CCC associated with a colormap, use XcmsSetCCCOfColormap.

XecmsCCC XcmsSetCCCOfColormap(display , colormap , ccc)
Display * display ;
Colormap colormap ;

XemsCCCccc
display Specifies the connection to the X server.
colormap Specifies the colormap.
cce Specifies the CCC.

The XcmsSetCCCOfColormap function changes the CCC associated with the specified colormap.
It returns the CCC previously associated to the colormap. If they are not used again in the
application, CCCs should be freed by calling XcmsFreeCCC.

Window Management (X11R5): Xlib - C Language Binding 109
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Color Conversion Context Functions Color Management Functions

7.8.2 Obtaining the Default Color Conversion Context

The default CCC attributes for subsequently created CCCs can be changed by changing the CCC
attributes of the default CCC. A default CCC is associated with each screen.

To obtain the default CCC for a screen, use XcmsDefaultCCC.

XemsCCC XcmsDefaultCCC(display , screen_number)
Display * display ;
int screen_number ;

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host server.

The XcmsDefaultCCC function returns the default CCC for the specified screen. Its visual is the
default visual of the screen. Its initial gamut compression and white point adjustment
procedures as well as the associated client data are implementation-specific.

7.8.3 Color Conversion Context Macros

Applications should not directly modify any part of the XcemsCCC. The following lists the C-
language macros, their corresponding function equivalents that are for other language bindings,
and what data they both can return.

DisplayOfCCC(ccc)
XecmsCCCccc
Display *XcmsDisplayOfCCC(cce)
XemsCCCccc
cce Specifies the CCC.
Both return the display associated with the specified CCC.
VisualOfCCC(ccc)
XemsCCCccc
Visual *XcmsVisualOfCCC(cce)
XemsCCCccc
cce Specifies the CCC.
Both return the visual associated with the specified CCC.
ScreenNumberOfCCC(ccc)
XemsCCCccc
int XcmsScreenNumberOfCCC(ccc)
XemsCCCccc
cce Specifies the CCC.
Both return the number of the screen associated with the specified CCC.
ScreenWhitePointOfCCC(ccc)
XemsCCCccc

XcmsColor *XcmsScreenWhitePointOfCCC(cce)
XemsCCCccc

110 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Color Management Functions Color Conversion Context Functions

cce Specifies the CCC.
Both return the white point of the screen associated with the specified CCC.
ClientWhitePointOfCCC(cce)
XemsCCCccc
XcmsColor *XcmsClientWhitePointOfCCC(cce)
XemsCCCccc
cce Specifies the CCC.
Both return the Client White Point of the specified CCC.

7.8.4 Modifying Attributes of a Color Conversion Context
To set the Client White Point in the CCC, use XcmsSetWhitePoint.

Status XcmsSetWhitePoint(ccc, color)
XemsCCCccc
XcmsColor * color ;
cce Specifies the CCC.
color Specifies the new Client White Point.

The XcmsSetWhitePoint function changes the Client White Point in the specified CCC. Note that
the pixel member is ignored and that the color specification is left unchanged upon return. The
format for the new white point must be XcmsCIEXYZFormat, XcmsCIEuvYFormat,
XemsCIExyYFormat or XcmsUndefinedFormat. If color is NULL, this function sets the format
component of the Client White Point specification to XcmsUndefinedFormat, indicating that the
Client White Point is assumed to be the same as the Screen White Point.

To set the gamut compression procedure and corresponding client data in a specified CCC, use
XcmsSetCompressionProc.

XecmsCompressionProc XcmsSetCompressionProc(ccc, compression_proc
client data)
XemsCCCccc

XcmsCompressionProc compression_proc
XPointer client data

cce Specifies the CCC.

compression_proc Specifies the gamut compression procedure that is to be applied when a color
lies outside the screen’s color gamut. If NULL and when functions using this
CCC must convert a color specification to a device-dependent format and
encounters a color that lies outside the screen’s color gamut, that function will
return XcmsFailure.

client_data Specifies client data for the gamut compression procedure or NULL.

The XcmsSetCompressionProc function first sets the gamut compression procedure and client data
in the specified CCC with the newly specified procedure and client data and then returns the old
procedure.

To set the white point adjustment procedure and corresponding client data in a specified CCC,
use XcmsSetWhiteAdjustProc.

Window Management (X11R5): Xlib - C Language Binding 111
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Color Conversion Context Functions Color Management Functions

XemsWhiteAdjustProc XcmsSetWhiteAdjustProc(ccc, white_adjust proc ,
client data)
XemsCCCccc

XcmsWhiteAdjustProc white_adjust_proc ;
XPointer client data

cce Specifies the CCC.
white_adjust_proc Specifies the white point adjustment procedure.
client_data Specifies client data for the white point adjustment procedure or NULL.

The XcmsSetWhiteAdjustProc function first sets the white point adjustment procedure and client
data in the specified CCC with the newly specified procedure and client data and then returns
the old procedure.

7.8.,5 Creating and Freeing a Color Conversion Context

You can explicitly create a CCC within your application by calling XcmsCreateCCC. These
created CCCs can then be used by those functions that explicitly call for a CCC argument. Old
CCCs that will not be used by the application should be freed using XcmsFreeCCC.

To create a CCC, use XcmsCreateCCC.

XecmsCCC XcmsCreateCCC(display , screen_number , visual
client_white_point , compression_proc , compression_client data ,
white_adjust_proc , White_adjust client_data)

Display * display ;

int screen_number ;

Visual * visual ;

XcmsColor * client_white_point ;
XcmsCompressionProc ~ compression_proc
XPointer compression_client_data ;
XcmsWhiteAdjustProc white_adjust_proc ;
XPointer white_adjust _client_data ;

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host server.
visual Specifies the visual type.

client_white_point Specifies the Client White Point. If NULL, the Client White Point is to be
assumed to be the same as the Screen White Point. Note that the pixel
member is ignored.

compression_proc Specifies the gamut compression procedure that is to be applied when a color
lies outside the screen’s color gamut. If NULL and when functions using this
CCC must convert a color specification to a device-dependent format and
encounters a color that lies outside the screen’s color gamut, that function will
return XcmsFailure.

compression_client_data
Specifies client data for use by the gamut compression procedure or NULL.

white_adjust_proc Specifies the white adjustment procedure that is to be applied when the Client
White Point differs from the Screen White Point. NULL indicates that no
white point adjustment is desired.

112 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Color Management Functions Color Conversion Context Functions

white_adjust_client_data
Specifies client data for use with the white point adjustment procedure or
NULL.

The XcmsCreateCCC function creates a CCC for the specified display, screen and visual.
To free a CCC, use XcmsFreeCCC.

void XcmsFreeCCC(ccc)
XemsCCCccc

cce Specifies the CCC.

The XcmsFreeCCC function frees the memory used for the specified CCC. Note that default
CCCs and those currently associated with colormaps are ignored.

Window Management (X11R5): Xlib - C Language Binding 113
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Converting Between Color Spaces Color Management Functions

7.9

114

Converting Between Color Spaces

To convert an array of color specifications in arbitrary color formats to a single destination
format, use XcmsConvertColors.

Status XcmsConvertColors(ccc, colors in_out , ncolors
target format , compression_flags return)
XemsCCCccc

XcmsColor colors_in_out [];
unsigned int ncolors ;
XcmsColorFormat target format

Bool
cce
colors_in_out
ncolors

target_format

compression_flags_return [0;

Specifies the CCC. If conversion is between device-independent color spaces
only (for example, TekHVC to CIELuv), the CCC is necessary only to specify
the Client White Point.

Specifies an array of color specifications. Pixel members are ignored and
remain unchanged upon return.

Specifies the number of XcmsColor structures in the color specification array.

Specifies the target color specification format.

compression_flags_return

Specifies an array of Boolean values for returning compression status. If a
non-NULL pointer is supplied, each element of the array is set to True if the
corresponding color was compressed, and False otherwise. Pass NULL if the
compression status is not useful.

The XcmsConvertColors function converts the color specifications in the specified array of
XcmsColor structures from their current format to a single target format, using the specified
CCC. When the return value is XcmsFailure, the contents of the color specification array are left

unchanged.

The array may contain a mixture of color specification formats (for example, 3 CIE XYZ, 2 CIE
Luv, ..). Note that when the array contains both device-independent and device-dependent
color specifications, and the target_format argument specifies a device-dependent format (for
example, XemsRGBiFormat, XcmsRGBFormat) all specifications are converted to CIE XYZ format
then to the target device-dependent format.

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Color Management Functions Callback Functions

7.10 Callback Functions
This section describes the gamut compression and white point adjustment callbacks.

The gamut compression procedure specified in the Color Conversion Context is called when an
attempt to convert a color specification from XcmsCIEXYZ to a device-dependent format
(typically XecmsRGBI) results in a color that lies outside the screen’s color gamut. If the gamut
compression procedure requires client data, this data is passed via the gamut compression client
data in the CCC.

During color specification conversion between device-independent and device-dependent color
spaces, if a white point adjustment procedure is specified in the CCC, it is triggered when the
Client White Point and Screen White Point differ. If required, the client data is obtained from the
CCC.

7.10.1 Prototype Gamut Compression Procedure

The gamut compression callback interface must adhere to the following:

Atypedef Status (*XcmsCompressionProc)(ccc, colors in_out \
ncolors , index , compression_flags return)
XemsCCCccc

XcmsColor colors_in_outf] ;
unsigned int ncolors ;

unsigned int index ;

Bool compression_flags return|] ;

cce Specifies the CCC.

colors_in_out Specifies an array of color specifications. Pixel members are ignored and
remain unchanged upon return.

ncolors Specifies the number of XcmsColor structures in the color specification array.

index Specifies the index into the array of XcmsColor structures for the encountered

color specification that lies outside the Screen’s color gamut. Valid values are
0 (for the first element) to ncolors -1.

compression_flags_return
Specifies an array of Boolean values for returning compression status. If a
non-NULL pointer is supplied, and a color at a given index is compressed,
then True should be stored at the corresponding index in this array.

When implementing a gamut compression procedure, consider the following rules and
assumptions;

- The gamut compression procedure can attempt to compress one or multiple specifications at
atime.

« When called, elements 0 to index —1 in the array of color specification array can be assumed
to fall within the screen’s color gamut. In addition these color specifications are already in
some device-dependent format (typically XcmsRGBI). If any modifications are made to these
color specifications, they must upon return be in their initial device-dependent format.

« When called, the element in the color specification array specified by the index argument
contains the color specification outside the screen’s color gamut encountered by the calling
routine. In addition this color specification can be assumed to be in XcmsCIEXYZ. Upon
return, this color specification must be in XemsCIEXYZ.

Window Management (X11R5): Xlib - C Language Binding 115
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Callback Functions Color Management Functions

« When called, elements from index to ncolors -1 in the color specification array may or may
not fall within the screen’s color gamut. In addition these color specifications can be
assumed to be in XemsCIEXYZ. If any modifications are made to these color specifications,
they must upon return be in XemsCIEXYZ.

« The color specifications passed to the gamut compression procedure have already been
adjusted to the Screen White Point. This means that at this point the color specification’s
white point is the Screen White Point.

. If the gamut compression procedure uses a device-independent color space not initially
accessible for use in the color management system, use XcmsAddColorSpace to insure that it is
added.

7.10.2 Supplied Gamut Compression Procedures
The following equations are useful in describing gamut compression procedures.

CIELab Psychometric Chroma = sqrt (a_star? + b_star?)
CIELab Psychometric Hue = tan™? {_b_starl
a_star

CIELuv Psychometric Chroma = sqrt (u_star? + v_star?)

CIELuv Psychometric Hue = tan™ {_v_star 1
u_star

The gamut compression callback procedures provided by Xlib are as follows.

XcmsCIELabClipL
Brings the encountered out of gamut color specification into the screen’s color gamut by
reducing or increasing CIE metric lightness (L*) in the CIE L*a*b* color space until the color
is within the gamut. If the Psychometric Chroma of the color specification is beyond
maximum for the Psychometric Hue Angle, then, while maintaining the same Psychometric
Hue Angle, the color will be clipped to the CIE L*a*h* coordinates of maximum
Psychometric Chroma. See XcmsCIELabQueryMaxC. No client data is necessary.

XcmsCIELabClipab
Brings the encountered out of gamut color specification into the screen’s color gamut by
reducing Psychometric Chroma, while maintaining Psychometric Hue Angle, until the color
is within the gamut. No client data is necessary.

XcmsCIELabClipLab
Brings the encountered out of gamut color specification into the screen’s color gamut by
replacing it with CIE L*a*b* coordinates that fall within the color gamut while maintaining
the original Psychometric Hue Angle and whose vector to the original coordinates is the
shortest attainable. No client data is necessary.

XcemsCIELuvClipL
Brings the encountered out of gamut color specification into the screen’s color gamut by
reducing or increasing CIE metric lightness (L*) in the CIE L*u*v* color space until the color
is within the gamut. If the Psychometric Chroma of the color specification is beyond
maximum for the Psychometric Hue Angle, then, while maintaining the same Psychometric
Hue Angle, the color will be clipped to the CIE L*u*v* coordinates of maximum
Psychometric Chroma. See XcmsCIELuvQueryMaxC. No client data is necessary.

116 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Color Management Functions Callback Functions

XcemsCIELuvClipuv
Brings the encountered out of gamut color specification into the screen’s color gamut by
reducing Psychometric Chroma while maintaining Psychometric Hue Angle, until the color
is within the gamut. No client data is necessary.

XcmsCIELuvClipLuv
Brings the encountered out of gamut color specification into the screen’s color gamut by
replacing it with CIE L*u*v* coordinates that fall within the color gamut while maintaining
the original Psychometric Hue Angle and whose vector to the original coordinates is the
shortest attainable. No client data is necessary.

XcmsTekHVCClipV
Brings the encountered out of gamut color specification into the screen’s color gamut by
reducing or increasing the Value dimension in the TekHVC color space until the color is
within the gamut. If Chroma of the color specification is beyond maximum for the
particular Hue, then, while maintaining the same Hue, the color will be clipped to the Value
and Chroma coordinates that represent maximum Chroma for that particular Hue. No
client data is necessary.

XcmsTekHVCClipC
Brings the encountered out of gamut color specification into the screen’s color gamut by
reducing the Chroma dimension in the TekHVC color space until the color is within the
gamut. No client data is necessary.

XcmsTekHVCClipvC
Brings the encountered out of gamut color specification into the screen’s color gamut by
replacing it with TekHVC coordinates that fall within the color gamut while maintaining
the original Hue and whose vector to the original coordinates is the shortest attainable. No
client data is necessary.

7.10.3 Prototype White Point Adjustment Procedure
The white point adjustment procedure interface must adhere to the following:
typedef Status (*XcmsWhiteAdjustProc)(ccc, Initial_white_point ,
target_white_point , target format , colors in_out
ncolors , compression flags return)
XemsCCCccc
XcmsColor * initial_white_point ;
XcmsColor * target white_point ;
XcmsColorFormat target format
XcmsColor colors_in_outf] ;
unsigned int ncolors ;
Bool compression_flags return|] ;
cce Specifies the CCC.
initial_white_point Specifies the initial white point.
target_white_point Specifies the target white point.
target_format Specifies the target color specification format.
colors_in_out Specifies an array of color specifications. Pixel members are ignored and
remain unchanged upon return.
ncolors Specifies the number of XcmsColor structures in the color specification array.
Window Management (X11R5): Xlib - C Language Binding 117

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Callback Functions Color Management Functions

7.10.4

118

compression_flags_return
Specifies an array of Boolean values for returning compression status. If a
non-NULL pointer is supplied, and a color at a given index is compressed,
then True should be stored at the corresponding index in this array.

Supplied White Point Adjustment Procedures
White point adjustment procedures provided by Xlib are as follows.

XcmsCIELabWhiteShiftColors
Uses the CIE L*a*b* color space for adjusting the chromatic character of colors to
compensate for the chromatic differences between the source and destination white points.
This procedure simply converts the color specifications to XcmsCIELab using the source
white point and then converts to the target specification format using the destinations white
point. No client data is necessary.

XemsCIELuvWhiteShiftColors
Uses the CIE L*u*v* color space for adjusting the chromatic character of colors to
compensate for the chromatic differences between the source and destination white points.
This procedure simply converts the color specifications to XcmsCIELuv using the source
white point and then converts to the target specification format using the destinations white
point. No client data is necessary.

XcemsTekHVCWhiteShiftColors
Uses the TekHVC color space for adjusting the chromatic character of colors to compensate
for the chromatic differences between the source and destination white points. This
procedure simply converts the color specifications to XcmsTekHVC using the source white
point and then converts to the target specification format using the destinations white point.
An advantage of this procedure over those previously described is an attempt to minimize
hue shift. No client data is necessary.

From an implementation point of view, these white point adjustment procedures convert the
color specifications to a device-independent but white-point-dependent color space (for
example, CIE L*u*v*, CIE L*a*b*, TekHVC) using one white point and then converting those
specifications to the target color space using another white point. In other words, the
specification goes in the color space with one white point but comes out with another white
point, resulting in a chromatic shift based on the chromatic displacement between the initial
white point and target white point. The CIE color spaces that are assumed to be white-point-
independent are CIE u'V'Y, CIE XYZ, and CIE xyY. When developing a custom white point
adjustment procedure that uses a device-independent color space not initially accessible for use
in the color management system, use XcmsAddColorSpace to insure that it is added.

As an example, if a white point adjustment procedure is specified by the Color Conversion
Context and if the Client White Point and Screen White Point differ, the XcmsAllocColor function
will use the white point adjustment procedure twice:

- once to convert to XcmsRGB
- asecond time to convert from XcmsRGB.

For example, assume the specification is in XcmsCIEuvY and the adjustment procedure is
XcemsCIELuvWhiteShiftColors. During conversion to XcmsRGB, the call to XcmsAllocColor results
in the following series of color specification conversions:

« from XcmsCIEuvY to XcmsCIELuv using the Client White Point
« from XcmsCIELuv to XemsCIEuvY using the Screen White Point

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Color Management Functions Callback Functions

« from XcmsCIEuvY to XecmsCIEXYZ (CIE u'V'Y and XYZ are white-point-independent color
spaces)

« from XcmsCIEXYZ to XcmsRGBiI
- finally, from X¢cmsRGBi to XcmsRGB.

The resulting RGB specification is passed to XAllocColor and the RGB specification returned by
XAllocColor is converted back to XemsCIEuvY by reversing the color conversion sequence.

Window Management (X11R5): Xlib - C Language Binding 119
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Gamut Querying Functions Color Management Functions

7.11

7111

120

Gamut Querying Functions

This section describes the gamut querying functions that are provided by Xlib. These functions
allow the client to query the boundary of the screen’s color gamut in terms of the CIE L*a*b*, CIE
L*u*v* and TekHVC color spaces. Functions are also provided that allow you to query the color
specification of:

« White (full intensity red, green and blue)

- Red (full intensity red while green and blue are zero)

« Green (full intensity green while red and blue are zero)
- Blue (full intensity blue while red and green are zero)

- Black (zero intensity red, green and blue).

The white point associated with color specifications passed to and returned from these gamut
querying functions are assumed to be the Screen White Point. This is a reasonable assumption,
since the client is trying to query the screen’s color gamut.

Note that the following naming convention is used for the ““Max’’ and ‘““Min’’ functions:

Xcms<color_space> QueryMax <dimensions>

Xcms<color_space> QueryMin <dimensions>

Note that the <dimensions> consists of letter or letters that identify the dimension or dimensions
of the color space that are not fixed. For example, XcmsTekHVCQueryMaxcC is given a fixed Hue
and Value for which maximum Chroma is found.

Red, Green and Blue Queries

To obtain the color specification for black (zero intensity red, green and blue), use
XcmsQueryBlack.

Status XcmsQueryBlack(ccc, target format , color return)
XemsCCCccc
XcmsColorFormat target format
XcmsColor * color_return ;

cce Specifies the CCC. Note that the CCC’s Client White Point and White Point
Adjustment procedures are ignored.

target_format Specifies the target color specification format.

color_return Returns the color specification in the specified target format for zero intensity

red, green and blue. The white point associated with the returned color
specification is the Screen White Point. The value returned in the pixel
member is undefined.

The XcmsQueryBlack function returns the color specification in the specified target format for
zero intensity red, green and blue.

To obtain the color specification for blue (full intensity blue while red and green are zero), use
XcmsQueryBlue.

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Color Management Functions Gamut Querying Functions

Status XcmsQueryBlue(ccc, target format , color return)
XemsCCCccc
XcmsColorFormat target format
XcmsColor * color_return ;

cce Specifies the CCC. Note that the CCC’s Client White Point and White Point
Adjustment procedures are ignored.

target_format Specifies the target color specification format.

color_return Returns the color specification in the specified target format for full intensity
blue while red and green are zero. The white point associated with the
returned color specification is the Screen White Point. The value returned in
the pixel member is undefined.

The XcmsQueryBlue function returns the color specification in the specified target format for full
intensity blue while red and green are zero.

To obtain the color specification for green (full intensity green while red and blue are zero), use
XcmsQueryGreen.

Status XcmsQueryGreen(ccc, target format , color return)
XemsCCCccc
XcmsColorFormat target format
XcmsColor * color_return ;

cce Specifies the CCC. Note that the CCC’s Client White Point and White Point
Adjustment procedures are ignored.

target_format Specifies the target color specification format.

color_return Returns the color specification in the specified target format for full intensity
green while red and blue are zero. The white point associated with the
returned color specification is the Screen White Point. The value returned in
the pixel member is undefined.

The XcmsQueryGreen function returns the color specification in the specified target format for
full intensity green while red and blue are zero.

To obtain the color specification for red (full intensity red while green and blue are zero), use
XcmsQueryRed.

Status XcmsQueryRed(ccc, target format , color_return)
XemsCCCccc
XcmsColorFormat target format
XcmsColor * color_return ;

cce Specifies the CCC. Note that the CCC’s Client White Point and White Point
Adjustment procedures are ignored.

target_format Specifies the target color specification format.

color_return Returns the color specification in the specified target format for full intensity
red while green and blue are zero. The white point associated with the
returned color specification is the Screen White Point. The value returned in
the pixel member is undefined.

The XcmsQueryRed function returns the color specification in the specified target format for full
intensity red while green and blue are zero.

Window Management (X11R5): Xlib - C Language Binding 121
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Gamut Querying Functions Color Management Functions

To obtain the color specification for white (full intensity red, green and blue), use
XcmsQueryWhite.

Status XcmsQueryWhite(ccc, target format , color return)
XemsCCCccc
XcmsColorFormat target format
XcmsColor * color_return ;

cce Specifies the CCC. Note that the CCC’s Client White Point and White Point
Adjustment procedures are ignored.

target_format Specifies the target color specification format.

color_return Returns the color specification in the specified target format for full intensity
red, green and blue. The white point associated with the returned color
specification is the Screen White Point. The value returned in the pixel
member is undefined.

The XcmsQueryWhite function returns the color specification in the specified target format for
full intensity red, green and blue.

7.11.2 CIELab Queries

To obtain the CIE L*a*b* coordinates of maximum Psychometric Chroma for a given
Psychometric Hue Angle and CIE metric lightness (L*), use XcmsCIELabQueryMaxC.

CIELab Psychometric Chroma = sqrt (a_star? + b_star?)

CIELab Psychometric Hue = tan™ {
a_star

b_star}
Status XcmsCIELabQueryMaxC(ccc, hue _angle , L star , color_return)
XemsCCCccc
XcmsFloat hue_angle ;
XcmsFloat L_star ;
XcmsColor * color_return ;

cce Specifies the CCC. Note that the CCC’s Client White Point and White Point
Adjustment procedures are ignored.

hue_angle Specifies the hue angle in degrees at which to find maximum chroma.
L_star Specifies the lightness (L*) at which to find maximum chroma.
color_return Returns the CIE L*a*b* coordinates of maximum chroma displayable by the

screen for the given hue angle and lightness. The white point associated with
the returned color specification is the Screen White Point. The value returned
in the pixel member is undefined.

The XcmsCIlELabQueryMaxC function, given a hue angle and lightness, finds the point of
maximum chroma displayable by the screen. It returns this point in CIE L*a*b* coordinates.

To obtain the CIE L*a*b* coordinates of maximum CIE metric lightness (L*) for a given
Psychometric Hue Angle and Psychometric Chroma, use XcmsCIELabQueryMaxL.

122 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Color Management Functions Gamut Querying Functions

Status XcmsCIELabQueryMaxL(ccc, hue _angle , chroma, color return)
XemsCCCccc
XcmsFloat hue_angle ;
XcmsFloat chroma;;
XcmsColor * color_return ;

cce Specifies the CCC. Note that the CCC’s Client White Point and White Point
Adjustment procedures are ignored.

hue_angle Specifies the hue angle in degrees at which to find maximum lightness.
chroma Specifies the chroma at which to find maximum lightness.
color_return Returns the CIE L*a*b* coordinates of maximum lightness displayable by the

screen for the given hue angle and chroma. The white point associated with
the returned color specification is the Screen White Point. The value returned
in the pixel member is undefined.

The XcmsCIELabQueryMaxL function, given a hue angle and chroma, finds the point in CIE
L*a*b* color space of maximum lightness (L*) displayable by the screen. It returns this point in
CIE L*a*b* coordinates. An XcmsFailure return value usually indicates that the given chroma is
beyond maximum for the given hue angle.

To obtain the CIE L*a*b* coordinates of maximum Psychometric Chroma for a given
Psychometric Hue Angle, use XcmsCIELabQueryMaxLC.

Status XcmsCIELabQueryMaxLC(ccc, hue _angle , color return)
XemsCCCccc
XcmsFloat hue_angle ;
XcmsColor * color_return ;

cce Specifies the CCC. Note that the CCC’s Client White Point and White Point
Adjustment procedures are ignored.

hue_angle Specifies the hue angle in degrees at which to find maximum chroma.

color_return Returns the CIE L*a*b* coordinates of maximum chroma displayable by the
screen for the given hue angle. The white point associated with the returned
color specification is the Screen White Point. The value returned in the pixel
member is undefined.

The XcmsCIELabQueryMaxLC function, given a hue angle, finds the point of maximum chroma
displayable by the screen. It returns this point in CIE L*a*b* coordinates.

To obtain the CIE L*a*b* coordinates of minimum CIE metric lightness (L*) for a given
Psychometric Hue Angle and Psychometric Chroma, use XcmsCIELabQueryMinL.

Status XcmsCIELabQueryMinL(ccc, hue_angle , chroma, color return)
XemsCCCccc
XcmsFloat hue_angle ;
XcmsFloat chroma;;
XcmsColor * color_return ;

cce Specifies the CCC. Note that the CCC’s Client White Point and White Point
Adjustment procedures are ignored.

hue_angle Specifies the hue angle in degrees at which to find minimum lightness.
chroma Specifies the chroma at which to find minimum lightness.
Window Management (X11R5): Xlib - C Language Binding 123

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Gamut Querying Functions Color Management Functions

color_return Returns the CIE L*a*b* coordinates of minimum lightness displayable by the
screen for the given hue angle and chroma. The white point associated with
the returned color specification is the Screen White Point. The value returned
in the pixel member is undefined.

The XcmsCIELabQueryMinL function, given a hue angle and chroma, finds the point of minimum
lightness (L*) displayable by the screen. It returns this point in CIE L*a*b* coordinates. An
XcmsFailure return value usually indicates that the given chroma is beyond maximum for the
given hue angle.

7.11.3 CIELuv Queries

To obtain the CIE L*u*v* coordinates of maximum Psychometric Chroma for a given
Psychometric Hue Angle and CIE metric lightness (L*), use XcmsCIELuvQueryMaxcC.

CIELuv Psychometric Chroma = sqrt (u_star? + v_star?)
CIELuv Psychometric Hue = tan™ {_v_star 1
u_star

Status XcmsCIELuvQueryMaxC(ccc, hue _angle , L star , color_return)
XemsCCCccc
XcmsFloat hue_angle ;
XcmsFloat L_star ;
XcmsColor * color_return ;

cce Specifies the CCC. Note that the CCC’s Client White Point and White Point
Adjustment procedures are ignored.

hue_angle Specifies the hue angle in degrees at which to find maximum chroma.
L_star Specifies the lightness (L*) at which to find maximum chroma.
color_return Returns the CIE L*u*v* coordinates of maximum chroma displayable by the

screen for the given hue angle and lightness. The white point associated with
the returned color specification is the Screen White Point. The value returned
in the pixel member is undefined.

The XcmsCIELuvQueryMaxC function, given a hue angle and lightness, finds the point of
maximum chroma displayable by the screen. Note that it returns this point in CIE L*u*v*
coordinates.

To obtain the CIE L*u*v* coordinates of maximum CIE metric lightness (L*) for a given
Psychometric Hue Angle and Psychometric Chroma, use XcmsCIELuvQueryMaxL.

Status XcmsCIELuvQueryMaxL(ccc, hue_angle , chroma, color return)
XemsCCCccc
XcmsFloat hue_angle ;
XcmsFloat chroma;;
XcmsColor * color_return ;

cce Specifies the CCC. Note that the CCC’s Client White Point and White Point
Adjustment procedures are ignored.

hue_angle Specifies the hue angle in degrees at which to find maximum lightness.
L_star Specifies the lightness (L*) at which to find maximum lightness.
124 X/Open CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Color Management Functions Gamut Querying Functions

color_return Returns the CIE L*u*v* coordinates of maximum lightness displayable by the
screen for the given hue angle and chroma. The white point associated with
the returned color specification is the Screen White Point. The value returned
in the pixel member is undefined.

The XcmsCIELuvQueryMaxL function, given a hue angle and chroma, finds the point in CIE
L*u*v* color space of maximum lightness (L*) displayable by the screen. Note that it returns this
point in CIE L*u*v* coordinates. An XcmsFailure return value usually indicates that the given
chroma is beyond maximum for the given hue angle.

To obtain the CIE L*u*v* coordinates of maximum Psychometric Chroma for a given
Psychometric Hue Angle, use XcmsCIELuvQueryMaxLC.

Status XcmsCIELuvQueryMaxLC(ccc, hue _angle , color return)
XemsCCCccc
XcmsFloat hue_angle ;
XcmsColor * color_return ;

cce Specifies the CCC. Note that the CCC’s Client White Point and White Point
Adjustment procedures are ignored.

hue_angle Specifies the hue angle in degrees at which to find maximum chroma.

color_return Returns the CIE L*u*v* coordinates of maximum chroma displayable by the
screen for the given hue angle. The white point associated with the returned
color specification is the Screen White Point. The value returned in the pixel
member is undefined.

The XcmsCIELuvQueryMaxLC function, given a hue angle, finds the point of maximum chroma
displayable by the screen. Note that it returns this point in CIE L*u*v* coordinates.

To obtain the CIE L*u*v* coordinates of minimum CIE metric lightness (L*) for a given
Psychometric Hue Angle and Psychometric Chroma, use XcmsCIELuvQueryMinL.

Status XcmsCIELuvQueryMinL(ccc, hue_angle , chroma, color return)
XemsCCCccc
XcmsFloat hue_angle ;
XcmsFloat chroma;;
XcmsColor * color_return ;

cce Specifies the CCC. Note that the CCC’s Client White Point and White Point
Adjustment procedures are ignored.

hue_angle Specifies the hue angle in degrees at which to find minimum lightness.
chroma Specifies the chroma at which to find minimum lightness.
color_return Returns the CIE L*u*v* coordinates of minimum lightness displayable by the

screen for the given hue angle and chroma. The white point associated with
the returned color specification is the Screen White Point. The value returned
in the pixel member is undefined.

The XemsCIELuvQueryMinL function, given a hue angle and chroma, finds the point of minimum
lightness (L*) displayable by the screen. Note that it returns this point in CIE L*u*v* coordinates.
An XcmsFailure return value usually indicates that the given chroma is beyond maximum for the
given hue angle.

Window Management (X11R5): Xlib - C Language Binding 125
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Gamut Querying Functions Color Management Functions

7.11.4 TekHVC Queries

To obtain the maximum Chroma for a given Hue and Value, use XcmsTekHVCQueryMaxC.

Status XcmsTekHVCQueryMaxC(ccc, hue, value , color return)
XemsCCCccc
XcmsFloat hue;
XcmsFloat value ;
XcmsColor * color_return ;

cce Specifies the CCC. Note that the CCC’s Client White Point and White Point
Adjustment procedures are ignored.

hue Specifies the Hue in which to find the maximum Chroma.
value Specifies the Value in which to find the maximum Chroma.
color_return Returns the maximum Chroma along with the actual Hue and Value at which

the maximum Chroma was found. The white point associated with the
returned color specification is the Screen White Point. The value returned in
the pixel member is undefined.

The XcmsTekHVCQueryMaxC function, given a Hue and Value, determines the maximum
Chroma in TekHVC color space displayable by the screen. Note that it returns the maximum
Chroma along with the actual Hue and Value at which the maximum Chroma was found.

To obtain the maximum Value for a given Hue and Chroma, use XcmsTekHVCQueryMaxV .

Status XcmsTekHVCQueryMaxV(ccc, hue, chroma, color return)
XemsCCCccc
XcmsFloat hue;
XcmsFloat chroma;;
XcmsColor * color_return ;

cce Specifies the CCC. Note that the CCC’s Client White Point and White Point
Adjustment procedures are ignored.

hue Specifies the Hue in which to find the maximum Value.
chroma Specifies the chroma at which to find maximum Value.
color_return Returns the maximum Value along with the Hue and Chroma at which the

maximum Value was found. The white point associated with the returned
color specification is the Screen White Point. The value returned in the pixel
member is undefined.

The XcmsTekHVCQueryMaxV function, given a Hue and Chroma, determines the maximum
Value in TekHVC color space displayable by the screen. Note that it returns the maximum Value
and the actual Hue and Chroma at which the maximum Value was found.

To obtain the maximum Chroma and Value at which it is reached for a specified Hue, use
XemsTekHVCQueryMaxVC.

Status XcmsTekHVCQueryMaxVC(ccc, hue, color return)
XemsCCCccc
XcmsFloat hue;
XcmsColor * color_return ;

cce Specifies the CCC. Note that the CCC’s Client White Point and White Point
Adjustment procedures are ignored.

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Color Management Functions Gamut Querying Functions

hue Specifies the Hue in which to find the maximum Chroma.

color_return Returns the color specification in XcmsTekHVC for the maximum Chroma,
the Value at which that maximum Chroma is reached and actual Hue at which
the maximum Chroma was found. The white point associated with the
returned color specification is the Screen White Point. The value returned in
the pixel member is undefined.

The XcmsTekHVCQueryMaxVVC function, given a Hue, determines the maximum Chroma in
TekHVC color space displayable by the screen and the Value at which that maximum Chroma is
reached. Note that it returns the maximum Chroma, the Value at which that maximum Chroma
is reached, and the actual Hue for which the maximum Chroma was found.

To obtain a specified number of TekHVC specifications such that they contain a maximum
Values for a specified Hue, and the Chroma at which the maximum Values are reached, use
XcemsTekHVCQueryMaxVSamples.

Status XcmsTekHVCQueryMaxVSamples(ccc, hue, colors return , hsamples)
XemsCCCccc
XcmsFloat hue;
XcmsColor colors_return|] ;
unsigned int nsamples ;

cce Specifies the CCC. Note that the CCC’s Client White Point and White Point
Adjustment procedures are ignored.

hue Specifies the Hue for maximum Chroma/Value samples.
nsamples Specifies the number of samples.
colors_in_out Returns nsamples of color specifications in XcmsTekHVC such that the

Chroma is the maximum attainable for the Value and Hue. The white point
associated with the returned color specification is the Screen White Point. The
value returned in the pixel member is undefined.

The XcmsTekHVCQueryMaxVSamples returns nsamples of maximum Value, Chroma at which
that maximum Value is reached, and the actual Hue for which the maximum Chroma was
found. These sample points may then be used to plot the maximum Value/Chroma boundary of
the screen’s color gamut for the specified Hue in TekHVC color space.

To obtain the minimum Value for a given Hue and Chroma, use XcmsTekHVCQueryMinV.

Status XcmsTekHVCQueryMinV(ccc, hue, chroma, color return)
XemsCCCccc
XcmsFloat hue;
XcmsFloat chroma;;
XcmsColor * color_return ;

cce Specifies the CCC. Note that the CCC’s Client White Point and White Point
Adjustment procedures are ignored.

hue Specifies the Hue in which to find the minimum Value.
value Specifies the Value in which to find the minimum Value.
color_return Returns the minimum Value and the actual Hue and Chroma at which the

minimum Value was found. The white point associated with the returned
color specification is the Screen White Point. The value returned in the pixel
member is undefined.

Window Management (X11R5): Xlib - C Language Binding 127
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Gamut Querying Functions Color Management Functions

The XcmsTekHVCQueryMinV function, given a Hue and Chroma, determines the minimum
Value in TekHVC color space displayable by the screen. Note that it returns the minimum Value
and the actual Hue and Chroma at which the minimum Value was found.

128 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Color Management Functions Color Management Extensions

7.12

7.12.1

7.12.2

Color Management Extensions
The Xlib color management facilities can be extended in two ways:
« Device-independent Color Spaces

- device-independent color spaces that are derivable to CIE XYZ space can be added using the
XcmsAddColorSpace function

. Color Characterization Function Set

- a Color Characterization Function Set consists of device-dependent color spaces and their
functions that convert between these color spaces and the CIE XYZ color space, bundled
together for a specific class of output devices. A function set can be added using the
XcmsAddFunctionSet function.

Color Spaces

The CIE XYZ color space serves as the ““hub’ for all conversions between device-independent
and device-dependent color spaces. Therefore, associated with each color space is the
knowledge to convert an XcmsColor structure to and from CIE XYZ format. For example,
conversion from CIE L*u*v* to RGB requires the knowledge to convert from CIE L*u*v* to CIE
XYZ and from CIE XYZ to RGB. This knowledge is stored as an array of functions that when
applied in series will convert the XcmsColor structure to or from CIE XYZ format. This color
specification conversion mechanism facilitates the addition of color spaces.

Of course, when converting between only device-independent color spaces or only device-
dependent color spaces, short cuts are taken whenever possible. For example, conversion from
TekHVC to CIE L*u*v* is performed by intermediate conversion to CIE u*v*Y and then to CIE
L*u*v*, thus bypassing conversion between CIE u*v*Y and CIE XYZ.

Adding Device-independent Color Spaces
To add a device-independent color space, use XcmsAddColorSpace.

Status XcmsAddColorSpace(color_space)
XcmsColorSpace * color_space

color_space Specifies the device-independent color space to add.

The XcmsAddColorSpace function makes a device-independent color space (actually an
XcmsColorSpace structure) accessible by the color management system. Because format values
for unregistered color spaces are assigned at run-time, they should be treated as private to the
client. If references to an unregistered color space must be made outside the client (for example,
storing color specifications in a file using the unregistered color space), then reference should be
made by color space prefix (see XcmsFormatOfPrefix and XcmsPrefixOfFormat).

If the XcmsColorSpace structure is already accessible in the color management system,
XcmsAddColorSpace returns XcmsSuccess.

Note that added XcmsColorSpaces must be retained for reference by Xlib.

Window Management (X11R5): Xlib - C Language Binding 129
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Color Management Extensions Color Management Functions

7.12.3

7.12.4

130

Querying Color Space Format and Prefix

To obtain the format associated with the color space associated with a specified color string
prefix, use XcmsFormatOfPrefix.

XcmsColorFormat XcmsFormatOfPrefix(prefix)
char * prefix ;

prefix Specifies the string that contains the color space prefix.

The XcmsFormatOfPrefix function returns format for the specified color space prefix (for example,
“CIEXYZ"). Note that the prefix is case-insensitive. If the color space is not accessible in the
color management system, XcmsFormatOfPrefix returns XcmsUndefinedFormat.

To obtain the color string prefix associated with the color space specified by a color format, use
XcmsPrefixOfFormat.

char *XcmsPrefixOfFormat(format)
XcmsColorFormat format

format Specifies the color specification format.

The XcmsPrefixOfFormat function returns the string prefix associated with the color specification
encoding specified by format. Otherwise, if none is found, it returns NULL. Note that the
returned string must be treated as read-only.

Creating Additional Color Spaces

Color space-specific information necessary for color space conversion and color string parsing is
stored in an XcmsColorSpace structure. Therefore, a new structure containing this information is
required for each additional color space. In the case of device-independent color spaces, a
handle to this new structure (that is, by means of a global variable) is usually made accessible to
the client program for use with the XcmsAddColorSpace function.

If a new XcmsColorSpace structure specifies a color space not registered with the X Consortium,
because format values for unregistered color spaces are assigned at run-time they should be
treated as private to the client. If references to an unregistered color space must be made outside
the client (for example, storing color specifications in a file using the unregistered color space),
then reference should be made by color space prefix (see XcmsFormatOfPrefix and
XcmsPrefixOfFormat).

typedef (*XcmsConversionProc)();
typedef XcmsConversionProc *XcmsFuncListPtr;
/* A NULL terminated list of function pointers*/

typedef struct _XcmsColorSpace {
char *prefix;
XcmsColorFormat format;
XcmsParseStringProc parseString;
XcmsFuncListPtr to CIEXYZ;
XcmsFuncListPtr from_CIEXYZ;
int inverse_flag;

} XcmsColorSpace;

The prefix member specifies the prefix that indicates a color string is in this color space’s string
format. For example, “‘ciexyz’ or “CIEXYZ" for CIE XYZ, and “‘rgb”” or ““RGB’’ for RGB. Note
that the prefix is case-insensitive. The format member specifies the color specification format.
Formats for unregistered color spaces are assigned at run-time. The parseString member

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Color Management Functions Color Management Extensions

contains a pointer to the function that can parse a color string into an XcmsColor structure. This
function returns an integer (int): non-zero if it succeeded and zero otherwise. The to_CIEXYZ
and from_CIEXYZ members contain pointers, each to a NULL terminated list of function
pointers. When the list of functions are executed in series, it will convert the color specified in an
XcmsColor structure from/to the current color space format to/from the CIE XYZ format. Each
function returns an integer (int): non-zero if it succeeded and zero otherwise. Note that the
white point to be associated with the colors is specified explicitly, even though white points can
be found in the Color Conversion Context. The inverse_flag member, if non-zero, specifies that
for each function listed in to_CIEXYZ, its inverse function can be found in from_CIEXYZ such
that:

Given : n = number of functions in each list
foreach i, such that 0 < =i<n
from_CIEXYZ[n - i - 1] is the inverse of to_CIEXYZ]I].

This allows Xlib to use the shortest conversion path, thus, bypassing CIE XYZ if possible (for
example, TekHVC to CIE L*u*v*).

7.12.,5 Parse String Callback

The callback in the XcmsColorSpace structure for parsing a color string for the particular color
space must adhere to the following software interface specification:

typedef int (*XcmsParseStringProc)(color_string , color_return)
char * color_string ;
XcmsColor * color_return ; /* color to compress */

color_string Specifies the color string to parse.

color_return Returns the color specification in the color space’s format.

7.12.6 Color Specification Conversion Callback

Callback functions in the XcmsColorSpace structure for converting a color specification between
device-independent spaces must adhere to the following software interface specification:

Status ConversionProc(ccc, white _point , colors in_out , ncolors)
XemsCCCccc
XcmsColor * white_point
XcmsColor * colors in_out
unsigned int ncolors ;

cce Specifies the CCC.

white_point Specifies the white point associated with color specifications. Note that the
pixel member is ignored and that the color specification is left unchanged
upon return.

colors_in_out Specifies an array of color specifications. Pixel members are ignored and
remain unchanged upon return.

ncolors Specifies the number of XcmsColor structures in the color specification array.

Callback functions in the XcmsColorSpace structure for converting a color specification to or from
a device-dependent space must adhere to the following software interface specification:

Window Management (X11R5): Xlib - C Language Binding 131
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Color Management Extensions

7.12.7

132

0 1995, X/Open Company Limited.

Color Management Functions

Status ConversionProc(
XemsCCCccc
XcmsColor * colors _in_out
unsigned int ncolors ;

Bool compression_flags return [0;

cce Specifies the CCC.

ccc, colors in_out , ncolors , compression_flags return

colors_in_out Specifies an array of color specifications. Pixel members are ignored and

remain unchanged upon return.

ncolors Specifies the number of XcmsColor structures in the color specification array.

compression_flags_return
Specifies an array of Boolean values for returning compression status. If a
non-NULL pointer is supplied, and a color at a given index is compressed,
then True should be stored at the corresponding index in this array.

Conversion functions are available globally for use by other color spaces. The conversion
functions provided by Xlib are:

Function

XcmsCIELabToCIEXYZ
XemsCIELuvToCIEuvY

Converts

From XcmsCIELabFormat to XcmsCIEXYZFormat
From XcmsCIELuvFormat to XemsCIEuvYFormat

XecmsCIEXYZToCIELab
XemsCIEXYZToCIEuvY
XemsCIEXYZToCIExyY
XcmsCIEXYZToRGBI
XecmsCIEuvYToCIELuv
XemsCIEuvYToCIEXYZ
XcmsCIEuvYToTekHVC
XemsCIExyYToCIEXYZ

From XcmsCIEXYZFormat to XcmsCIELabFormat
From XcmsCIEXYZFormat to XemsCIEuvYFormat
From XcmsCIEXYZFormat to XcmsCIExyYFormat
From XcmsCIEXYZFormat to XcmsRGBiFormat
From XcmsCIEuvYFormat to XcmsCIELabFormat
From XcmsCIEuvYFormat to XemsCIEXYZFormat
From XcmsCIEuvYFormat to XemsTekHVCFormat
From XcmsCIExyYFormat to XcmsCIEXYZFormat

XcmsRGBToRGBI
XcmsRGBIiToCIEXYZ
XcmsRGBIiToRGB
XecmsTekHVCToCIEuvY

From XcmsRGBFormat to XcmsRGBiFormat

From XcmsRGBiFormat to XcmsCIEXYZFormat
From XcmsRGBiFormat to XcmsRGBFormat

From XcmsTekHVCFormat to XemsCIEuvYFormat

Function Sets

Functions to convert between device-dependent color spaces and CIE XYZ may differ for
different classes of output devices (for example, color versus gray monitors). Therefore, the
notion of a Color Characterization Function Set (hereafter referred to as a Function Set) has been
developed. A function set consists of device-dependent color spaces and the functions that
convert color specifications between these device-dependent color spaces and the CIE XYZ color
space appropriate for a particular class of output devices. The function set also contains a
function that reads color characterization data off root window properties. It is this
characterization data that will differ between devices within a class of output devices. For
details about color characterization data is stored in root window properties, see Device Color
Characterization in the ICCCM specification. The LINEAR_RGB Function Set is provided by
Xlib and will support most color monitors. Function sets may require data that differs from
those needed for the LINEAR_RGB Function Set. In that case, its corresponding data may be
stored on different root window properties.

X/0pen CAE Specification
Stamp: X XXX XXXXXX XX XXX X XXX XXXXX

Color Management Functions Color Management Extensions

7.12.8 Adding Function Sets
To add a Color Characterization Function Set, use XcmsAddFunctionSet.

Status XcmsAddFunctionSet(function_set)
XcmsFunctionSet * function_set

function_set Specifies the Color Characterization Function Set to add.

The XcmsAddFunctionSet adds a Color Characterization Function Set to the color management
system. If the Function Set uses device-dependent XcmsColorSpace structures not accessible in
the color management system, XcmsAddFunctionSet adds them. If an added XcmsColorSpace
structure is for a device-dependent color space not registered with the X Consortium, because
format values for unregistered color spaces are assigned at run-time they should be treated as
private to the client. If references to an unregistered color space must be made outside the client
(for example, storing color specifications in a file using the unregistered color space), then
reference should be made by color space prefix (see XcmsFormatOfPrefix and
XcmsPrefixOfFormat).

Additional function sets should be added before any calls to other Xlib routines are made. If not,
the XcmsPerScrninfo member of a previously created XcemsCCC does not have the opportunity to
initialize with the added Function Set.

7.12.9 Creating Additional Function Sets

Creation of additional Color Characterization Function Sets should be required only when an
output device does not conform to existing function sets or when additional device-dependent
color spaces are necessary. A function set consists primarily of a collection of device-dependent
XcmsColorSpace structures and a means to read and store a screen’s color characterization data.
This data is stored in an XcmsFunctionSet structure. A handle to this structure (that is, by means
of global variable) is usually made accessible to the client program for use with
XcmsAddFunctionSet.

If a Function Set uses new device-dependent XcmsColorSpace structures, they will be
transparently processed into the color management system. Function Sets can share an
XcmsColorSpace structure for a device-dependent color space. In addition, multiple
XcmsColorSpace structures are allowed for a device-dependent color space; however, a Function
Set can reference only one of them. These XcmsColorSpace structures will differ in the functions
to convert to and from CIE XYZ, thus tailored for the specific Function Set.

typedef struct _XcmsFunctionSet {
XcmsColorSpace **DDColorSpaces;
XcmsScreenlnitProc screenlnitProc;
XcmsScreenFreeProc screenFreeProc;
} XcmsFunctionSet;

The DDColorSpaces member is a pointer to a NULL terminated list of pointers to
XcmsColorSpace structures for the device-dependent color spaces that are supported by the
Function Set. The screenlnitProc member is set to the callback procedure (see following interface
specification) that initializes the XcmsPerScrninfo structure for a particular screen.

The screen initialization callback must adhere to the following software interface specification:

Window Management (X11R5): Xlib - C Language Binding 133
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Color Management Extensions Color Management Functions

typedef Status (*XcmsScreenlinitProc)(display , screen_number
screen_info)
Display * display ;
int screen_number ;
XcmsPerScrninfo * screen_info

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host server.

screen_info Specifies the XcmsPerScrninfo structure, which contains the per screen
information.

The screen initialization callback in the XcmsFunctionSet structure fetches the Color
Characterization Data (device profile) for the specified screen, typically off properties on the
screen’s root window; then it initializes the specified XcmsPerScrninfo structure. If successful, the
procedure fills in the XcmsPerScrninfo structure as follows:

. It sets the screenData member to the address of the created device profile data structure
(contents known only by the function set).

« It next sets the screenWhitePoint member.

« It next sets the functionSet member to the address of the XcmsFunctionSet structure.

« It then sets the state member to XcmslnitSuccess and finally returns XcmsSuccess.
If unsuccessful, the procedure sets the state member to XcmslInitFailure and returns XcmsFailure.
The XcmsPerScrninfo structure contains:

typedef struct _XcmsPerScrninfo {
XcmsColor screenWhitePoint;
XPointer functionSet;
XPointer screenData;
unsigned char state;
char pad[3];

} XcmsPerScrninfo;

The screenWhitePoint member specifies the white point inherent to the screen. The functionSet
member specifies the appropriate Function Set. The screenData member specifies the device
profile. The state member is set to one of the following:

- XcmslnitNone indicates initialization has not been previously attempted.

- XcmslnitFailure indicates initialization has been previously attempted but failed.

- XcmslnitSuccess indicates initialization has been previously attempted and succeeded.
The screen free callback must adhere to the following software interface specification:

typedef void (*XcmsScreenFreeProc)(screenData)
XPointer screenData ;

screenData Specifies the data to be freed.

This function is called to free the screenData stored in an XcmsPerScrninfo structure.

134 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Chapter 8

Graphics Context Functions

A number of resources are used when performing graphics operations in X. Most information
about performing graphics (for example, foreground color, background color, line style, and so
on) are stored in resources called graphics contexts (GC). Most graphics operations (see Chapter
9) take a GC as an argument. Although in theory the X protocol permits sharing of GCs between
applications, it is expected that applications will use their own GCs when performing
operations. Sharing of GCs is highly discouraged because the library may cache GC state.

Graphics operations can be performed to either windows or pixmaps, which collectively are
called drawables. Each drawable exists on a single screen. A GC is created for a specific screen
and drawable depth, and can only be used with drawables of matching screen and depth.

Window Management (X11R5): Xlib - C Language Binding 135
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Manipulating Graphics Context/State Graphics Context Functions

8.1 Manipulating Graphics Context/State

Most attributes of graphics operations are stored in Graphic Contexts (GCs). These include line
width, line style, plane mask, foreground, background, tile, stipple, clipping region, end style,
join style, and so on. Graphics operations (for example, drawing lines) use these values to
determine the actual drawing operation. Extensions to X may add additional components to
GCs. The contents of a GC are private to Xlib.

Xlib implements a write-back cache for all elements of a GC that are not resource IDs to allow
Xlib to implement the transparent coalescing of changes to GCs. For example, a call to
XSetForeground of a GC followed by a call to XSetLineAttributes results in only a single-change
GC protocol request to the server. GCs are neither expected nor encouraged to be shared
between client applications, so this write-back caching should present no problems.
Applications cannot share GCs without external synchronization. Therefore, sharing GCs
between applications is highly discouraged.

To set an attribute of a GC, set the appropriate member of the XGCValues structure and OR in the
corresponding value bitmask in your subsequent calls to XCreateGC. The symbols for the value
mask bits and the XGCValues structure are:

[* GC attribute value mask bits */

#define GCFunction (1L<<0)
#define GCPlaneMask (1L<<1)
#define GCForeground (1L<<2)
#define GCBackground (1L<<3)
#define GCLineWidth (1L<<4)
#define GClLineStyle (1L<<5)
#define GCCapStyle (1L<<6)
#define GClJoinStyle (1L<<7)
#define GCFillstyle (1L<<8)
#define GCEFillRule (1L<<9)
#define GCTile (1L<<10)
#define GCsStipple (1L<<11)
#define GCTileStipXOrigin (1L<<12)
#define GCTileStipYOrigin (1L<<13)
#define GCFont (1L<<14)
#define GCSubwindowMode (1L<<15)
#define GCGraphicsExposures (1L<<16)
#define GCClipXOrigin (1L<<17)
#define GCClipYOrigin (1L<<18)
#define GCClipMask (1L<<19)
#define GCDashOffset (1L<<20)
#define GCDashlList (1L<<21)
#define GCArcMode (1L<<22)
/* Values */
typedef struct {
int function; /* logical operation */

unsigned long plane_mask; /* plane mask */
unsigned long foreground; /* foreground pixel */
unsigned long background; /* background pixel */
int line_width; /* line width (in pixels) */

136 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Graphics Context Functions

int line_style;
int cap_style;

int join_style;
int fill_style;

int fill_rule;

int arc_mode;
Pixmap tile;
Pixmap stipple;
int ts_x_origin;
int ts_y origin;
Font font;

int subwindow_mode;
Bool graphics_exposures;

int clip_x_origin;
int clip_y_origin;

Pixmap clip_mask;

int dash_offset;
char dashes;

Manipulating Graphics Context/State

/* LineSolid, LineOnOffDash,
LineDoubleDash */
/* CapNotLast, CapButt, CapRound,
CapProjecting */
/* JoinMiter, JoinRound, JoinBevel */
/* FillSolid, FillTiled,
FillStippled FillOpaqueStippled*/
/* EvenOddRule, WindingRule */
/* ArcChord, ArcPieSlice */
/* tile pixmap for tiling operations */
[* stipple 1 plane pixmap for stippling */
[* offset for tile or stipple operations */

/* default text font for text operations */
/* ClipByChildren, Includelnferiors */
/* boolean, should exposures be generated */
[* origin for clipping */

/* bitmap clipping; other calls for rects */
[* patterned/dashed line information */

} XGCValues;
The default GC values are:
Component Default

function GXcopy

plane_mask All ones

foreground 0

background 1

line_width 0

line_style LineSolid

cap_style CapButt

join_style JoinMiter

fill_style FillSolid

fill_rule EvenOddRule

arc_mode ArcPieSlice

tile Pixmap of unspecified size filled with foreground pixel (that is,
client specified pixel if any, else 0) (subsequent changes to
foreground do not affect this pixmap) stipple Pixmap of
unspecified size filled with ones

ts_x_origin 0

ts_y origin 0

font <implementation dependent>

subwindow_mode ClipByChildren

graphics_exposures | True

clip_x_origin 0

clip_y_origin 0

clip_mask None

dash_offset 0

dashes 4 (that is, the list [4, 4])

Window Management (X11R5): Xlib - C Language Binding 137

0 1995, X/Open Company Limited.

Stamp:XXXXXXXXX XX XXX XXXXXX XXX

Manipulating Graphics Context/State Graphics Context Functions

Note that foreground and background are not set to any values likely to be useful in a window.

The function attributes of a GC are used when you update a section of a drawable (the
destination) with bits from somewhere else (the source). The function in a GC defines how the
new destination bits are to be computed from the source bits and the old destination bits.
GXcopy is typically the most useful because it will work on a color display, but special
applications may use other functions, particularly in concert with particular planes of a color
display. The 16 GC functions, defined in <X11/X.h>, are:

Function Name | Value Operation
GXclear 0x0 0

GXand 0x1 src AND dst
GXandReverse 0x2 src AND NOT dst
GXcopy 0x3 src

GXandInverted 0x4 (NOT src) AND dst
GXnoop 0x5 dst

GXxor 0x6 src XOR dst

GXor 0x7 src OR dst

GXnor 0x8 (NOT src) AND (NOT dst)
GXequiv 0x9 (NOT src) XOR dst
GXinvert Oxa NOT dst

GXorReverse O0xb src OR (NOT dst)
GXcopylnverted Oxc NOT src

GXorlinverted Oxd (NOT src) OR dst
GXnand Oxe (NOT src) OR (NOT dst)
GXset Oxf 1

Many graphics operations depend on either pixel values or planes in a GC. The planes attribute
is of type long, and it specifies which planes of the destination are to be modified, one bit per
plane. A monochrome display has only one plane and will be the least-significant bit of the
word. As planes are added to the display hardware, they will occupy more significant bits in the
plane mask.

In graphics operations, given a source and destination pixel, the result is computed bitwise on
corresponding bits of the pixels. That is, a Boolean operation is performed in each bit plane. The
plane_mask restricts the operation to a subset of planes. A macro constant AllPlanes can be used
to refer to all planes of the screen simultaneously. The result is computed by the following:

((src FUNC dst) AND plane-mask) OR (dst AND (NOT plane-mask))

Range checking is not performed on the values for foreground, background or plane_mask.
They are simply truncated to the appropriate number of bits. The line-width is measured in
pixels and either can be greater than or equal to one (wide line) or can be the special value zero
(thin line).

Wide lines are drawn centered on the path described by the graphics request. Unless otherwise
specified by the join-style or cap-style, the bounding box of a wide line with endpoints [x1, y1],
[x2, y2] and width w is a rectangle with vertices at the following real coordinates:

[X1-(w*sn/2), yl+(w*cs/2)], [x1+(w*sn/2), yl-(w*cs/2)],
[x2-(w*sn/2), y2+(w*cs/2)], [x2+(w*sn/2), y2-(w*cs/2)]

Here sn is the sine of the angle of the line, and cs is the cosine of the angle of the line. A pixel is
part of the line and so is drawn if the center of the pixel is fully inside the bounding box (which
is viewed as having infinitely thin edges). If the center of the pixel is exactly on the bounding
box, it is part of the line if and only if the interior is immediately to its right (x increasing

138 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Graphics Context Functions Manipulating Graphics Context/State

direction). Pixels with centers on a horizontal edge are a special case and are part of the line if
and only if the interior or the boundary is immediately below (y increasing direction) and the
interior or the boundary is immediately to the right (x increasing direction).

Thin lines (zero line-width) are one-pixel-wide lines drawn using an unspecified, device-
dependent algorithm. There are only two constraints on this algorithm.

1. If aline is drawn unclipped from [x1,y1] to [x2,y2] and if another line is drawn unclipped
from [x1+dx,yl+dy] to [x2+dx,y2+dy], a point [x,y] is touched by drawing the first line if
and only if the point [x+dx,y+dy] is touched by drawing the second line.

2. The effective set of points comprising a line cannot be affected by clipping. That is, a point
is touched in a clipped line if and only if the point lies inside the clipping region and the
point would be touched by the line when drawn unclipped.

A wide line drawn from [x1,y1] to [x2,y2] always draws the same pixels as a wide line drawn
from [x2,y2] to [x1,yl], not counting cap-style and join-style. It is recommended that this
property be true for thin lines, but this is not required. A line-width of zero may differ from a
line-width of one in which pixels are drawn. This permits the use of many manufacturers’ line
drawing hardware, which may run many times faster than the more precisely specified wide
lines.

In general, drawing a thin line will be faster than drawing a wide line of width one. However,
because of their different drawing algorithms, thin lines may not mix well aesthetically with
wide lines. If it is desirable to obtain precise and uniform results across all displays, a client
should always use a line-width of one rather than a line-width of zero.

The line-style defines which sections of a line are drawn:

LineSolid The full path of the line is drawn.
LineDoubleDash The full path of the line is drawn, but the even dashes are filled
differently than the odd dashes (see fill-style) with CapButt style used
where even and odd dashes meet.
LineOnOffDash Only the even dashes are drawn, and cap-style applies to all internal
ends of the individual dashes, except CapNotLast is treated as CapBultt.

The cap-style defines how the endpoints of a path are drawn:

CapNotLast This is equivalent to CapButt except that for a line-width of zero the
final endpoint is not drawn.

CapButt The line is square at the endpoint (perpendicular to the slope of the
line) with no projection beyond.

CapRound The line has a circular arc with the diameter equal to the line-width,
centered on the endpoint. (This is equivalent to CapButt for line-width
of zero).

CapProjecting The line is square at the end, but the path continues beyond the

endpoint for a distance equal to half the line-width. (This is
equivalent to CapButt for line-width of zero).

The join-style defines how corners are drawn for wide lines:

Window Management (X11R5): Xlib - C Language Binding 139
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Manipulating Graphics Context/State Graphics Context Functions

140

JoinMiter The outer edges of two lines extend to meet at an angle. However, if
the angle is less than 11 degrees, then a JoinBevel join-style is used
instead.

JoinRound The corner is a circular arc with the diameter equal to the line-width,
centered on the joinpoint.

JoinBevel The corner has CapButt endpoint styles with the triangular notch
filled.

For a line with coincident endpoints (x1=x2, yl=y2), when the cap-style is applied to both
endpoints, the semantics depends on the line-width and the cap-style:

CapNotLast thin The results are device-dependent, but the desired effect is that
nothing is drawn.

CapButt thin The results are device-dependent, but the desired effect is that
a single pixel is drawn.

CapRound thin The results are the same as for CapButt/thin.

CapProjecting thin The results are the same as for CapButt/thin.

CapButt wide | Nothing is drawn.

CapRound wide | The closed path is a circle, centered at the endpoint, and with
the diameter equal to the line-width.

CapProjecting wide | The closed path is a square, aligned with the coordinate axes,
centered at the endpoint, and with the sides equal to the line-
width.

For a line with coincident endpoints (x1=x2, y1=y2), when the join-style is applied at one or both
endpoints, the effect is as if the line was removed from the overall path. However, if the total
path consists of or is reduced to a single point joined with itself, the effect is the same as when
the cap-style is applied at both endpoints.

The tile/stipple represents an infinite 2D plane, with the tile/stipple replicated in all dimensions.
When that plane is superimposed on the drawable for use in a graphics operation, the upper left
corner of some instance of the tile/stipple is at the coordinates within the drawable specified by
the tile/stipple origin. The tile/stipple and clip origins are interpreted relative to the origin of
whatever destination drawable is specified in a graphics request. The tile pixmap must have the
same root and depth as the GC, or a BadMatch error results. The stipple pixmap must have
depth one and must have the same root as the GC, or a BadMatch error results. For stipple
operations where the fill-style is FillStippled but not FillOpaqueStippled, the stipple pattern is tiled
in a single plane and acts as an additional clip mask to be ANDed with the clip-mask. Although
some sizes may be faster to use than others, any size pixmap can be used for tiling or stippling.

The fill-style defines the contents of the source for line, text and fill requests. For all text and fill
requests (for example, XDrawText, XDrawText16, XFillRectangle, XFillPolygon and XFillArc); for
line requests with line-style LineSolid (for example, XDrawLine, XDrawSegments,
XDrawRectangle, XDrawArc); and for the even dashes for line requests with line-style
LineOnOffDash or LineDoubleDash, the following apply:

FillSolid Foreground

FillTiled Tile

FillOpaqueStippled A tile with the same width and height as stipple, but with background
everywhere stipple has a zero and with foreground everywhere
stipple has a one

FillStippled Foreground masked by stipple

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Graphics Context Functions Manipulating Graphics Context/State

When drawing lines with line-style LineDoubleDash, the odd dashes are controlled by the fill-
style in the following manner:

FillSolid Background

Fill Tiled Same as for even dashes
FillOpaqueStippled Same as for even dashes
FillStippled Background masked by stipple

Storing a pixmap in a GC might or might not result in a copy being made. If the pixmap is later
used as the destination for a graphics request, the change might or might not be reflected in the
GC. If the pixmap is used simultaneously in a graphics request both as a destination and as a
tile or stipple, the results are undefined.

For optimum performance, you should draw as much as possible with the same GC (without
changing its components). The costs of changing GC components relative to using different GCs
depend upon the display hardware and the server implementation. It is quite likely that some
amount of GC information will be cached in display hardware and that such hardware can only
cache a small number of GCs.

The dashes value is actually a simplified form of the more general patterns that can be set with
XSetDashes. Specifying a value of N is equivalent to specifying the two-element list [N, N] in
XSetDashes. The value must be non-zero, or a BadValue error results.

The clip-mask restricts writes to the destination drawable. If the clip-mask is set to a pixmap, it
must have depth one and have the same root as the GC, or a BadMatch error results. If clip-mask
is set to None, the pixels are always drawn regardless of the clip origin. The clip-mask also can
be set by calling the XSetClipRectangles or XSetRegion functions. Only pixels where the clip-mask
has a bit set to 1 are drawn. Pixels are not drawn outside the area covered by the clip-mask or
where the clip-mask has a bit set to 0. The clip-mask affects all graphics requests. The clip-mask
does not clip sources. The clip-mask origin is interpreted relative to the origin of whatever
destination drawable is specified in a graphics request.

You can set the subwindow-mode to ClipByChildren or Includelnferiors. For ClipByChildren, both
source and destination windows are additionally clipped by all viewable InputOutput children.
For Includelnferiors, neither source nor destination window is clipped by inferiors. This will
result in including subwindow contents in the source and drawing through subwindow
boundaries of the destination. The use of Includelnferiors on a window of one depth with
mapped inferiors of differing depth is not illegal, but the semantics are undefined by the core
protocol.

The fill-rule defines what pixels are inside (drawn) for paths given in XFillPolygon requests and
can be set to EvenOddRule or WindingRule. For EvenOddRule, a point is inside if an infinite ray
with the point as origin crosses the path an odd number of times. For WindingRule, a point is
inside if an infinite ray with the point as origin crosses an unequal number of clockwise and
counterclockwise directed path segments. A clockwise directed path segment is one that crosses
the ray from left to right as observed from the point. A counterclockwise segment is one that
crosses the ray from right to left as observed from the point. The case where a directed line
segment is coincident with the ray is uninteresting because you can simply choose a different ray
that is not coincident with a segment.

For both EvenOddRule and WindingRule, a point is infinitely small, and the path is an infinitely
thin line. A pixel is inside if the center point of the pixel is inside and the center point is not on
the boundary. If the center point is on the boundary, the pixel is inside if and only if the polygon
interior is immediately to its right (x increasing direction). Pixels with centers on a horizontal
edge are a special case and are inside if and only if the polygon interior is immediately below (y
increasing direction).

Window Management (X11R5): Xlib - C Language Binding 141
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Manipulating Graphics Context/State Graphics Context Functions

The arc-mode controls filling in the XFillArcs function and can be set to ArcPieSlice or ArcChord.
For ArcPieSlice, the arcs are pie-slice filled. For ArcChord, the arcs are chord filled.

The graphics-exposure flag controls GraphicsExpose event generation for XCopyArea and
XCopyPlane requests (and any similar requests defined by extensions).

To create a new GC that is usable on a given screen with a depth of drawable, use XCreateGC.

GC XCreateGC(display , d, valuemask , values)
Display * display ;
Drawable d,
unsigned long valuemask ;
XGCValues * values ;

display Specifies the connection to the X server.
d Specifies the drawable.
valuemask Specifies which components in the GC are to be set using the information in

the specified values structure. This argument is the bitwise inclusive OR of
zero or more of the valid GC component mask bits.

values Specifies any values as specified by the valuemask.

The XCreateGC function creates a graphics context and returns a GC. The GC can be used with
any destination drawable having the same root and depth as the specified drawable. Use with
other drawables results in a BadMatch error.

XCreateGC can generate BadAlloc, BadDrawable, BadFont, BadMatch, BadPixmap and BadValue
errors.

To copy components from a source GC to a destination GC, use XCopyGC.

XCopyGC(display , src, valuemask , dest)
Display * display ;
GC src, dest ;
unsigned long valuemask ;

display Specifies the connection to the X server.
src Specifies the components of the source GC.
valuemask Specifies which components in the GC are to be copied to the destination GC.

This argument is the bitwise inclusive OR of zero or more of the valid GC
component mask bits.

dest Specifies the destination GC.

The XCopyGC function copies the specified components from the source GC to the destination
GC. The source and destination GCs must have the same root and depth, or a BadMatch error
results. The valuemask specifies which component to copy, as for XCreateGC.

XCopyGC can generate BadAlloc, BadGC and BadMatch errors.
To change the components in a given GC, use XChangeGC.

XChangeGC(display , gc, valuemask , values)
Display * display ;
GC gc;
unsigned long valuemask ;
XGCValues * values ;

142 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Graphics Context Functions Manipulating Graphics Context/State

display Specifies the connection to the X server.
gc Specifies the GC.
valuemask Specifies which components in the GC are to be changed using information in

the specified values structure. This argument is the bitwise inclusive OR of
zero or more of the valid GC component mask bits.

values Specifies any values as specified by the valuemask.

The XChangeGC function changes the components specified by valuemask for the specified GC.
The values argument contains the values to be set. The values and restrictions are the same as
for XCreateGC. Changing the clip-mask overrides any previous XSetClipRectangles request on
the context. Changing the dash-offset or dash-list overrides any previous XSetDashes request on
the context. The order in which components are verified and altered is server-dependent. If an
error is generated, a subset of the components may have been altered.

XChangeGC can generate BadAlloc, BadFont, BadGC, BadMatch, BadPixmap and BadValue errors.
To obtain components of a given GC, use XGetGCValues.

Status XGetGCValues(display , gc, valuemask , values return)
Display * display ;
GC gc;
unsigned long valuemask ;
XGCValues * values return

display Specifies the connection to the X server.
gc Specifies the GC.
valuemask Specifies which components in the GC are to be returned in the values_return

argument. This argument is the bitwise inclusive OR of zero or more of the
valid GC component mask bits.

values_return Returns the GC values in the specified XGCValues structure.

The XGetGCValues function returns the components specified by valuemask for the specified
GC. If the valuemask contains a valid set of GC mask bits (GCFunction, GCPlaneMask,
GCForeground, GCBackground, GCLineWidth, GCLineStyle, GCCapStyle, GCloinStyle, GCFillStyle,
GCFillRule, GCTile, GCStipple, GCTileStipXOrigin, GCTileStipYOrigin, GCFont,
GCSubwindowMode, GCGraphicsExposures, GCClipXOrigin, GCCLipYOrigin, GCDashOffset or
GCArcMode) and no error occur, XGetGCValues sets the requested components in values_return
and returns a non-zero status. Otherwise, it returns a zero status. Note that the clip-mask and
dash-list (represented by the GCClipMask and GCDashList bits, respectively, in the valuemask)
cannot be requested. Also note that an invalid resource ID (with one or more of the three most-
significant bits set to one) will be returned for GCFont, GCTile and GCStipple if the component
has never been explicitly set by the client.

To free a given GC, use XFreeGC.

XFreeGC(display , gc)
Display * display ;
GC gc;

display Specifies the connection to the X server.
gc Specifies the GC.

The XFreeGC function destroys the specified GC as well as all the associated storage.

Window Management (X11R5): Xlib - C Language Binding 143
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Manipulating Graphics Context/State Graphics Context Functions

XFreeGC can generate a BadGC error.
To obtain the GContext resource ID for a given GC, use XGContextFromGC.

GContext XGContextFromGC(gc)

GC gc;

gc Specifies the GC for which you want the resource ID.
Xlib normally defers sending changes to the components of a GC to the server until a graphics
function is actually called with that GC. This permits batching of component changes into a
single server request. In some circumstances, however, it may be necessary for the client to
explicitly force sending of the changes to the server. An example might be when a protocol

extension uses the GC indirectly, in such a way that the extension interface cannot know what
GC will be used. To force sending of GC component changes, use XFlushGC.

void XFlushGC(display , gc)
Display * display ;
GC gc;

display Specifies the connection to the X server.

gc Specifies the GC.

144 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Graphics Context Functions Using GC Convenience Routines

8.2 Using GC Convenience Routines

This section discusses how to set the:
. foreground, background, plane mask or function components
- line attributes and dashes components
« fill style and fill rule components
- fill tile and stipple components
- font component
- clip region component

- arc mode, subwindow mode and graphics exposure components.

8.2.1 Setting the Foreground, Background, Function, or Plane Mask

To set the foreground, background, plane mask and function components for a given GC, use

XSetState.
XSetState(display , gc, foreground , background |,
function , plane_mask)
Display * display ;
GC gc;
unsigned long foreground , background ;

int function ;
unsigned long plane_mask ;

display Specifies the connection to the X server.

gc Specifies the GC.

foreground Specifies the foreground you want to set for the specified GC.
background Specifies the background you want to set for the specified GC.
function Specifies the function you want to set for the specified GC.
plane_mask Specifies the plane mask.

XSetState can generate BadAlloc, BadGC and BadValue errors.
To set the foreground of a given GC, use XSetForeground.

XSetForeground(display , gc, foreground)
Display * display ;
GC gc;
unsigned long foreground

display Specifies the connection to the X server.
gc Specifies the GC.
foreground Specifies the foreground you want to set for the specified GC.

XSetForeground can generate BadAlloc and BadGC errors.

To set the background of a given GC, use XSetBackground.

Window Management (X11R5): Xlib - C Language Binding 145
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Using GC Convenience Routines Graphics Context Functions

XSetBackground(display , gc, background)
Display * display ;
GC gc;
unsigned long background ;

display Specifies the connection to the X server.
gc Specifies the GC.
background Specifies the background you want to set for the specified GC.

XSetBackground can generate BadAlloc and BadGC errors.
To set the display function in a given GC, use XSetFunction.

XSetFunction(display , gc, function)
Display * display ;
GC gc;
int function

display Specifies the connection to the X server.
gc Specifies the GC.
function Specifies the function you want to set for the specified GC.

XSetFunction can generate BadAlloc, BadGC and BadValue errors.
To set the plane mask of a given GC, use XSetPlaneMask.

XSetPlaneMask(display , gc, plane_mask)
Display * display ;
GC gc;
unsigned long plane_mask ;

display Specifies the connection to the X server.
gc Specifies the GC.
plane_mask Specifies the plane mask.

XSetPlaneMask can generate BadAlloc and BadGC errors.

8.2.2 Setting the Line Attributes and Dashes

To set the line drawing components of a given GC, use XSetLineAttributes.

XSetLineAttributes(display , gc, line_width
line_style , cap_style , join style)
Display * display ;
GC gc;

unsigned int line_width ;
int line_style ;

int cap_style ;

int join_style ;

display Specifies the connection to the X server.
gc Specifies the GC.
line_width Specifies the line-width you want to set for the specified GC.
146 X/Open CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Graphics Context Functions Using GC Convenience Routines

line_style Specifies the line-style you want to set for the specified GC. You can pass
LineSolid, LineOnOffDash or LineDoubleDash.

cap_style Specifies the line-style and cap-style you want to set for the specified GC. You
can pass CapNotLast, CapButt, CapRound or CapProjecting.

join_style Specifies the line join-style you want to set for the specified GC. You can pass
JoinMuiter, JoinRound or JoinBevel.

XSetLineAttributes can generate BadAlloc, BadGC and BadValue errors.
To set the dash-offset and dash-list for dashed line styles of a given GC, use XSetDashes.

XSetDashes(display , gc, dash offset , dash list , n)
Display * display ;
GC gc;
int dash_offset ;
char dash_list [];

int

display Specifies the connection to the X server.

gc Specifies the GC.

dash_offset Specifies the phase of the pattern for the dashed line-style you want to set for
the specified GC.

dash_list Specifies the dash-list for the dashed line-style you want to set for the
specified GC.

n Specifies the number of elements in dash_list.

The XSetDashes function sets the dash-offset and dash-list attributes for dashed line styles in the
specified GC. There must be at least one element in the specified dash_list, or a BadValue error
results. The initial and alternating elements (second, fourth, and so on) of the dash_list are the
even dashes, and the others are the odd dashes. Each element specifies a dash length in pixels.
All of the elements must be non-zero, or a BadValue error results. Specifying an odd-length list is
equivalent to specifying the same list concatenated with itself to produce an even-length list.

The dash-offset defines the phase of the pattern, specifying how many pixels into the dash-list
the pattern should actually begin in any single graphics request. Dashing is continuous through
path elements combined with a join-style but is reset to the dash-offset between each sequence
of joined lines.

The unit of measure for dashes is the same for the ordinary coordinate system. Ideally, a dash
length is measured along the slope of the line, but implementations are only required to match
this ideal for horizontal and vertical lines. Failing the ideal semantics, it is suggested that the
length be measured along the major axis of the line. The major axis is defined as the x axis for
lines drawn at an angle of between -45 and +45 degrees or between 135 and 225 degrees from
the x axis. For all other lines, the major axis is the y axis.

XSetDashes can generate BadAlloc, BadGC and BadValue errors.

Window Management (X11R5): Xlib - C Language Binding 147
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Using GC Convenience Routines Graphics Context Functions

8.2.3 Setting the Fill Style and Fill Rule
To set the fill-style of a given GC, use XSetFillStyle.

XSetFillStyle(display , gc, fill_style)
Display * display ;
GC gc;
int fill_style ;

display Specifies the connection to the X server.
gc Specifies the GC.
fill_style Specifies the fill-style you want to set for the specified GC. You can pass

FillSolid, FillTiled, FillStippled or FillOpaqueStippled.
XSetFillStyle can generate BadAlloc, BadGC and BadValue errors.
To set the fill-rule of a given GC, use XSetFillRule.

XSetFillRule(display , gc, fill_rule)
Display * display ;
GC gc;
int fill_rule ;

display Specifies the connection to the X server.
gc Specifies the GC.
fill_rule Specifies the fill-rule you want to set for the specified GC. You can pass

EvenOddRule or WindingRule.
XSetFillRule can generate BadAlloc, BadGC and BadValue errors.

8.24 Setting the Fill Tile and Stipple

Some displays have hardware support for tiling or stippling with patterns of specific sizes.
Tiling and stippling operations that restrict themselves to those specific sizes run much faster
than such operations with arbitrary size patterns. Xlib provides functions that you can use to
determine the best size, tile or stipple for the display as well as to set the tile or stipple shape and
the tile or stipple origin.

To obtain the best size of a tile, stipple, or cursor, use XQueryBestSize.

Status XQueryBestSize(display , class , which_screen

width , height , width_return , height return)
Display * display ;
int class ;

Drawable which_screen ;
unsigned int width , height ;

unsigned int * width_return |, * height return ;
display Specifies the connection to the X server.
class Specifies the class that you are interested in. You can pass TileShape,
CursorShape or StippleShape.
which_screen Specifies any drawable on the screen.
width
height Specify the width and height.
148 X/Open CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Graphics Context Functions

width_return
height_return Return the width and height of the

hardware.

The XQueryBestSize function returns the best or clo
CursorShape, this is the largest size that can be fully

Using GC Convenience Routines

object best supported by the display

sest size to the specified size. For
displayed on the screen specified by

which_screen. For TileShape, this is the size that can be tiled fastest. For StippleShape, this is the
size that can be stippled fastest. For CursorShape, the drawable indicates the desired screen. For
TileShape and StippleShape, the drawable indicates the screen and possibly the window class and
depth. An InputOnly window cannot be used as the drawable for TileShape or StippleShape, or a

BadMatch error results.

XQueryBestSize can generate BadDrawable, BadMatch and BadValue errors.

To obtain the best fill tile shape, use XQueryBestTile.

Status XQueryBestTile(display , which_screen , width |,
height , width _return , height return)
Display * display ;
Drawable which_screen ;
unsigned int width , height ;
unsigned int * width_return |, * height return ;

display Specifies the connection to the X server.
which_screen Specifies any drawable on the screen.
width

height Specify the width and height.

width_return
height_return
hardware.

Return the width and height of the object best supported by the display

The XQueryBestTile function returns the best or closest size, that is, the size that can be tiled
fastest on the screen specified by which_screen. The drawable indicates the screen and possibly
the window class and depth. If an InputOnly window is used as the drawable, a BadMatch error

results.

XQueryBestTile can generate BadDrawable and BadMatch errors.

To obtain the best stipple shape, use XQueryBestStipple.

Status XQueryBestStipple(display , which_screen , width ,
height , width _return , height return)
Display * display ;
Drawable which_screen ;
unsigned int width , height ;
unsigned int * width_return |, * height return ;

display Specifies the connection to the X server.
which_screen Specifies any drawable on the screen.
width

height Specify the width and height.

width_return
height_return
hardware.

Window Management (X11R5): Xlib - C Language Binding
0 1995, X/Open Company Limited.

Return the width and height of the object best supported by the display

149
Stamp:XXXXXXXXX XX XXX XXXXXX XXX

Using GC Convenience Routines Graphics Context Functions

The XQueryBestStipple function returns the best or closest size, that is, the size that can be
stippled fastest on the screen specified by which_screen. The drawable indicates the screen and
possibly the window class and depth. If an InputOnly window is used as the drawable, a
BadMatch error results.

XQueryBestStipple can generate BadDrawable and BadMatch errors.
To set the fill tile of a given GC, use XSetTile.

XSetTile(display , gc, tile)
Display * display ;

GC gc;
Pixmap tile ;
display Specifies the connection to the X server.
gc Specifies the GC.
tile Specifies the fill tile you want to set for the specified GC.

The tile and GC must have the same depth, or a BadMatch error results.
XSetTile can generate BadAlloc, BadGC, BadMatch and BadPixmap errors.
To set the stipple of a given GC, use XSetStipple.

XSetStipple(display , gc, stipple)
Display * display ;
GC gc;
Pixmap stipple ;

display Specifies the connection to the X server.
gc Specifies the GC.
stipple Specifies the stipple you want to set for the specified GC.

The stipple must have a depth of one, or a BadMatch error results.
XSetStipple can generate BadAlloc, BadGC, BadMatch and BadPixmap errors.
To set the tile or stipple origin of a given GC, use XSetTSOrigin.

XSetTSOrigin(display , gc, ts x origin , ts_ y origin)

Display * display ;
GC gc;
int ts x origin , ts y origin ;

display Specifies the connection to the X server.

gc Specifies the GC.

ts_x_origin

ts_y_origin Specify the x and y coordinates of the tile and stipple origin.

When graphics requests call for tiling or stippling, the parent’s origin will be interpreted relative
to whatever destination drawable is specified in the graphics request.

XSetTSOrigin can generate BadAlloc and BadGC error.

150 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Graphics Context Functions Using GC Convenience Routines

8.25 Setting the Current Font
To set the current font of a given GC, use XSetFont.

XSetFont(display , gc, font)
Display * display ;

GC gc;

Font font ;
display Specifies the connection to the X server.
gc Specifies the GC.
font Specifies the font.

XSetFont can generate BadAlloc, BadFont and BadGC errors.

8.2.6 Setting the Clip Region

Xlib provides functions that you can use to set the clip-origin and the clip-mask or set the clip-
mask to a list of rectangles.

To set the clip-origin of a given GC, use XSetClipOrigin.

XSetClipOrigin(display , gc, clip_x origin , Clip_y origin)
Display * display ;
GC gc;
int clip_x_origin , Clip_y origin ;

display Specifies the connection to the X server.
gc Specifies the GC.

clip_x_origin
clip_y_origin Specify the x and y coordinates of the clip-mask origin.

The clip-mask origin is interpreted relative to the origin of whatever destination drawable is
specified in the graphics request.

XSetClipOrigin can generate BadAlloc and BadGC errors.
To set the clip-mask of a given GC to the specified pixmap, use XSetClipMask.

XSetClipMask(display , gc, pixmap)
Display * display ;
GC gc;
Pixmap pixmap ;

display Specifies the connection to the X server.
gc Specifies the GC.
pixmap Specifies the pixmap or None.

If the clip-mask is set to None, the pixels are are always drawn (regardless of the clip-origin).
XSetClipMask can generate BadAlloc, BadGC, BadMatch and BadPixmap errors.

To set the clip-mask of a given GC to the specified list of rectangles, use XSetClipRectangles.

Window Management (X11R5): Xlib - C Language Binding 151
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Using GC Convenience Routines Graphics Context Functions

8.2.7

152

XSetClipRectangles(display , gc, clip_x origin ,

clip_y origin , rectangles , n, ordering)
Display * display ;
GC gc;
int clip_x_origin , Clip_y origin ;
XRectangle rectangles [];
int
int ordering ;
display Specifies the connection to the X server.
gc Specifies the GC.
clip_x_origin
clip_y_origin Specify the x and y coordinates of the clip-mask origin.
rectangles Specifies an array of rectangles that define the clip-mask.
n Specifies the number of rectangles.
ordering Specifies the ordering relations on the rectangles. You can pass Unsorted,

YSorted, YXSorted or YXBanded.

The XSetClipRectangles function changes the clip-mask in the specified GC to the specified list of
rectangles and sets the clip origin. The output is clipped to remain contained within the
rectangles. The clip-origin is interpreted relative to the origin of whatever destination drawable
is specified in a graphics request. The rectangle coordinates are interpreted relative to the clip-
origin. The rectangles should be nonintersecting, or the graphics results will be undefined. Note
that the list of rectangles can be empty, which effectively disables output. This is the opposite of
passing None as the clip-mask in XCreateGC, XChangeGC and XSetClipMask.

If known by the client, ordering relations on the rectangles can be specified with the ordering
argument. This may provide faster operation by the server. If an incorrect ordering is specified,
the X server may generate a BadMatch error, but it is not required to do so. If no error is
generated, the graphics results are undefined. Unsorted means the rectangles are in arbitrary
order. YSorted means that the rectangles are non-decreasing in their Y origin. YXSorted
additionally constrains YSorted order in that all rectangles with an equal Y origin are non-
decreasing in their X origin. YXBanded additionally constrains YXSorted by requiring that, for
every possible Y scanline, all rectangles that include that scanline have an identical Y origins and
Y extents.

XSetClipRectangles can generate BadAlloc, BadGC, BadMatch and BadValue errors.

Xlib provides a set of basic functions for performing region arithmetic. For information about
these functions, see Section 17.5.

Setting the Arc Mode, Subwindow Mode and Graphics Exposure
To set the arc mode of a given GC, use XSetArcMode.

XSetArcMode(display , gc, arc_mode)
Display * display ;
GC gc;
int arc_mode ;

display Specifies the connection to the X server.

gc Specifies the GC.

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Graphics Context Functions Using GC Convenience Routines

arc_mode Specifies the arc mode. You can pass ArcChord or ArcPieSlice.
XSetArcMode can generate BadAlloc, BadGC and BadValue errors.
To set the subwindow mode of a given GC, use XSetSubwindowMode.

XSetSubwindowMode(display , gc, subwindow_mode)
Display * display ;
GC gc;
int subwindow_mode ;

display Specifies the connection to the X server.
gc Specifies the GC.

subwindow_mode Specifies the subwindow mode. You can pass ClipByChildren or
Includelnferiors.

XSetSubwindowMode can generate BadAlloc, BadGC and BadValue errors.
To set the graphics-exposures flag of a given GC, use XSetGraphicsExposures.

XSetGraphicsExposures(display , gc, graphics exposures)
Display * display ;
GC gc;
Bool graphics exposures ;

display Specifies the connection to the X server.
gc Specifies the GC.

graphics_exposures Specifies a Boolean value that indicates whether you want GraphicsExpose and
NoExpose events to be reported when calling XCopyArea and XCopyPlane with
this GC.

XSetGraphicsExposures can generate BadAlloc, BadGC and BadValue errors.

Window Management (X11R5): Xlib - C Language Binding 153
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Graphics Context Functions

154 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Chapter 9

Graphics Functions

Once you have established a connection to a display, you can use the Xlib graphics functions to:
- clear and copy areas
- draw points, lines, rectangles and arcs
- fill areas
« manipulate fonts
» draw text
- transfer images between clients and the server.

If the same drawable and GC is used for each call, Xlib batches back-to-back calls to XDrawPoint,
XDrawLine, XDrawRectangle, XFillArc and XFillRectangle. Note that this reduces the total
number of requests sent to the server.

Window Management (X11R5): Xlib - C Language Binding 155
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Clearing Areas Graphics Functions

9.1 Clearing Areas

Xlib provides functions that you can use to clear an area or the entire window. Because pixmaps
do not have defined backgrounds, they cannot be filled by using the functions described in this
section. Instead, to accomplish an analogous operation on a pixmap, you should use
XFillRectangle, which sets the pixmap to a known value.

To clear a rectangular area of a given window, use XClearArea.

XClearArea(display , w x, y, width ,
height , exposures)
Display * display ;
Window w
int X, y;
unsigned int width , height ;
Bool exposures ;

display Specifies the connection to the X server.

w Specifies the window.

X

y Specify the x and y coordinates, which are relative to the origin of the window
and specify the upper-left corner of the rectangle.

width

height Specify the width and height, which are the dimensions of the rectangle.

exposures Specifies a Boolean value that indicates if Expose events are to be generated.

The XClearArea function paints a rectangular area in the specified window according to the
specified dimensions with the window’s background pixel or pixmap. The subwindow-mode
effectively is ClipByChildren. If width is zero, it is replaced with the current width of the window
minus Xx. If height is zero, it is replaced with the current height of the window minus y. If the
window has a defined background tile, the rectangle clipped by any children is filled with this
tile. If the window has background None, the contents of the window are not changed. In either
case, if exposures is True, one or more Expose events are generated for regions of the rectangle
that are either visible or are being retained in a backing store. If you specify a window whose
class is InputOnly, a BadMatch error results.

XClearArea can generate BadMatch, BadValue and BadWindow errors.
To clear the entire area in a given window, use XClearWindow.

XClearWindow(display , w)
Display * display ;

Window w
display Specifies the connection to the X server.
w Specifies the window.

The XClearWindow function clears the entire area in the specified window and is equivalent to
XClearArea (display, w, 0, 0, 0, 0, False). If the window has a defined background tile, the
rectangle is tiled with a plane-mask of all ones and GXcopy function. If the window has
background None, the contents of the window are not changed. If you specify a window whose
class is InputOnly, a BadMatch error results.

XClearWindow can generate BadMatch and BadWindow errors.

156 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Graphics Functions Copying Areas

9.2 Copying Areas
Xlib provides functions that you can use to copy an area or a bit plane.
To copy an area between drawables of the same root and depth, use XCopyArea.

XCopyArea(display , src, dest, gc, src x ,
src y , width , height , dest x , dest y)
Display * display ;
Drawable src, dest ;
GC gc;
int src x, srcy;
unsigned int width , height ;
int dest x , desty ;

display Specifies the connection to the X server.

src

dest Specify the source and destination rectangles to be combined.

gc Specifies the GC.

src_x

src_y Specify the x and y coordinates, which are relative to the origin of the source
rectangle and specify its upper-left corner.

width

height Specify the width and height, which are the dimensions of both the source and
destination rectangles.

dest_x

dest y Specify the x and y coordinates, which are relative to the origin of the

destination rectangle and specify its upper-left corner.

The XCopyArea function combines the specified rectangle of src with the specified rectangle of
dest. The drawables must have the same root and depth, or a BadMatch error results.

If regions of the source rectangle are obscured and have not been retained in backing store or if
regions outside the boundaries of the source drawable are specified, those regions are not
copied. Instead, the following occurs on all corresponding destination regions that are either
visible or are retained in backing store. If the destination is a window with a background other
than None, corresponding regions of the destination are tiled with that background (with plane-
mask of all ones and GXcopy function). Regardless of tiling or whether the destination is a
window or a pixmap, if graphics-exposures is True, then GraphicsExpose events for all
corresponding destination regions are generated. If graphics-exposures is True but no
GraphicsExpose events are generated, a NoExpose event is generated. Note that by default
graphics-exposures is True in new GCs.

This function uses these GC components: function, plane-mask, subwindow-mode, graphics-
exposures, clip-x-origin, clip-y-origin and clip-mask.

XCopyArea can generate BadDrawable, BadGC and BadMatch errors.

To copy asingle bit plane of a given drawable, use XCopyPlane.

Window Management (X11R5): Xlib - C Language Binding 157
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Copying Areas Graphics Functions

158

XCopyPlane(display , src, dest, gc, src x ,
src y , width , height , dest x ,
dest y , plane)

Display * display ;

Drawable src, dest ;

GC gc;

int src x, srcy;

unsigned int width , height ;
int dest x , desty ;

unsigned long plane ;

display Specifies the connection to the X server.

src

dest Specify the source and destination rectangles to be combined.

gc Specifies the GC.

src_x

src_y Specify the x and y coordinates, which are relative to the origin of the source
rectangle and specify its upper-left corner.

width

height Specify the width and height, which are the dimensions of both the source and
destination rectangles.

dest_x

dest y Specify the x and y coordinates, which are relative to the origin of the
destination rectangle and specify its upper-left corner.

plane Specifies the bit plane. You must set exactly one bit to 1.

The XCopyPlane function uses a single bit plane of the specified source rectangle combined with
the specified GC to modify the specified rectangle of dest. The drawables must have the same
root but need not have the same depth. If the drawables do not have the same root, a BadMatch
error results. If plane does not have exactly one bit set to 1 and the values of planes must be less
than 2", where n is the depth of src, a BadValue error results.

Effectively, XCopyPlane forms a pixmap of the same depth as the rectangle of dest and with a
size specified by the source region. It uses the foreground/background pixels in the GC
(foreground everywhere the bit plane in src contains a bit set to 1, background everywhere the
bit plane in src contains a bit set to 0) and the equivalent of a CopyArea protocol request is
performed with all the same exposure semantics. This can also be thought of as using the
specified region of the source bit plane as a stipple with a fill-style of FillOpaqueStippled for filling
a rectangular area of the destination.

This function uses these GC components: function, plane-mask, foreground, background,
subwindow-mode, graphics-exposures, clip-x-origin, clip-y-origin and clip-mask.

XCopyPlane can generate BadDrawable, BadGC, BadMatch and BadValue errors.

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Graphics Functions Drawing Points, Lines, Rectangles and Arcs

9.3 Drawing Points, Lines, Rectangles and Arcs
Xlib provides functions that you can use to draw:
- asingle point or multiple points
- asingle line or multiple lines
« asingle rectangle or multiple rectangles
- asingle arc or multiple arcs.
Some of the functions described in the following sections use these structures:

typedef struct {
short x1, y1, x2, y2;
} XSegment;

typedef struct {
short x, v;
} XPoint;

typedef struct {

short x, v;

unsigned short width, height;
} XRectangle;

typedef struct {

short x, v;

unsigned short width, height;

short anglel, angle2; [* Degrees * 64 */
} XArc;

All x and y members are signed integers. The width and height members are 16-bit unsigned
integers. You should be careful not to generate coordinates and sizes out of the 16-bit ranges,
because the protocol only has 16-bit fields for these values.

9.3.1 Drawing Single and Multiple Points
To draw a single point in a given drawable, use XDrawPoint.

XDrawPoint(display , d, gc, x, y)
Display * display ;
Drawable d,

GC gc;
int X, y;
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
X
y Specify the x and y coordinates where you want the point drawn.

To draw multiple points in a given drawable, use XDrawPoints.

Window Management (X11R5): Xlib - C Language Binding 159
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Drawing Points, Lines, Rectangles and Arcs Graphics Functions

XDrawPoints(display , d, gc, points , npoints , mode)
Display * display ;
Drawable d,

GC gc;
XPoint * points ;
int npoints ;
int mode,
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
points Specifies an array of points.
npoints Specifies the number of points in the array.
mode Specifies the coordinate mode. You can pass CoordModeOrigin or

CoordModePrevious.

The XDrawPoint function uses the foreground pixel and function components of the GC to draw
a single point into the specified drawable; XDrawPoints draws multiple points this way.
CoordModeOrigin treats all coordinates as relative to the origin, and CoordModePrevious treats all
coordinates after the first as relative to the previous point. XDrawPoints draws the points in the
order listed in the array.

Both functions use these GC components: function, plane-mask, foreground, subwindow-mode,
clip-x-origin, clip-y-origin and clip-mask.

XDrawPoint can generate BadDrawable, BadGC and BadMatch errors. XDrawPoints can generate
BadDrawable, BadGC, BadMatch and BadValue errors.

9.3.2 Drawing Single and Multiple Lines
To draw a single line between two points in a given drawable, use XDrawLine.

XDrawLine(display , d, gc, x1, yl, x2, y2)
Display * display ;
Drawable d,
GC gc;
int x1, y1, x2, yZ2,

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x1

yl

X2

y2 Specify the points (x1, y1) and (x2, y2) to be connected.

To draw multiple lines in a given drawable, use XDrawLines.

160 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Graphics Functions Drawing Points, Lines, Rectangles and Arcs

XDrawLines(display , d, gc, points , npoints , mode)
Display * display ;
Drawable d,

GC gc;
XPoint * points ;
int npoints ;
int mode,
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
points Specifies an array of points.
npoints Specifies the number of points in the array.
mode Specifies the coordinate mode. You can pass CoordModeOrigin or

CoordModePrevious.
To draw multiple, unconnected lines in a given drawable, use XDrawSegments.

XDrawSegments(display , d, gc, segments , nsegments)
Display * display ;
Drawable d,
GC gc;
XSegment * segments ;
int nsegments ;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

segments Specifies an array of segments.

nsegments Specifies the number of segments in the array.

The XDrawLine function uses the components of the specified GC to draw a line between the
specified set of points (x1, y1) and (x2, y2). It does not perform joining at coincident endpoints.
For any given line, XDrawLine does not draw a pixel more than once. If lines intersect, the
intersecting pixels are drawn multiple times.

The XDrawLines function uses the components of the specified GC to draw npoints-1 lines
between each pair of points (point[i], point[i+1]) in the array of XPoint structures. It draws the
lines in the order listed in the array. The lines join correctly at all intermediate points, and if the
first and last points coincide, the first and last lines also join correctly. For any given line,
XDrawLines does not draw a pixel more than once. If thin (zero line-width) lines intersect, the
intersecting pixels are drawn multiple times. If wide lines intersect, the intersecting pixels are
drawn only once, as though the entire PolyLine protocol request were a single, filled shape.
CoordModeOrigin treats all coordinates as relative to the origin, and CoordModePrevious treats all
coordinates after the first as relative to the previous point.

The XDrawSegments function draws multiple, unconnected lines. For each segment,
XDrawSegments draws a line between (x1, y1) and (x2, y2). It draws the lines in the order listed
in the array of XSegment structures and does not perform joining at coincident endpoints. For
any given line, XDrawSegments does not draw a pixel more than once. If lines intersect, the
intersecting pixels are drawn multiple times.

Window Management (X11R5): Xlib - C Language Binding 161
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Drawing Points, Lines, Rectangles and Arcs Graphics Functions

All three functions use these GC components: function, plane-mask, line-width, line-style, cap-
style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin and clip-mask. The XDrawLines
function also uses the join-style GC component. All three functions also use these GC mode-
dependent components: foreground, background, tile, stipple, tile-stipple-x-origin, tile-stipple-
y-origin, dash-offset and dash-list.

XDrawLine, XDrawLines and XDrawSegments can generate BadDrawable, BadGC and BadMatch
errors. XDrawLines also can generate BadValue errors.

9.3.3 Drawing Single and Multiple Rectangles
To draw the outline of a single rectangle in a given drawable, use XDrawRectangle.

XDrawRectangle(display , d, gc, X, Y,
width , height)
Display * display ;
Drawable d,

GC gc;
int x, y;
unsigned int width , height ;
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
X
y Specify the x and y coordinates, which specify the upper-left corner of the
rectangle.
width
height Specify the width and height, which specify the dimensions of the rectangle.

To draw the outline of multiple rectangles in a given drawable, use XDrawRectangles.

XDrawRectangles(display , d, gc, rectangles
nrectangles)
Display * display ;
Drawable d,
GC gc;
XRectangle rectangles [];
int nrectangles ;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

rectangles Specifies an array of rectangles.

nrectangles Specifies the number of rectangles in the array.

The XDrawRectangle and XDrawRectangles functions draw the outlines of the specified rectangle
or rectangles as if a five-point PolyLine protocol request were specified for each rectangle:

[x,y] [x+width,y] [x+width,y+height] [x,y+height] [X,y]

For the specified rectangle or rectangles, these functions do not draw a pixel more than once.
XDrawRectangles draws the rectangles in the order listed in the array. If rectangles intersect, the

162 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Graphics Functions Drawing Points, Lines, Rectangles and Arcs

intersecting pixels are drawn multiple times.

Both functions use these GC components: function, plane-mask, line-width, line-style, cap-style,
join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin and clip-mask. They also use
these GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-
origin, tile-stipple-y-origin, dash-offset and dash-list.

XDrawRectangle and XDrawRectangles can generate BadDrawable, BadGC and BadMatch errors.

9.34 Drawing Single and Multiple Arcs
To draw a single arc in a given drawable, use XDrawArc.

XDrawArc(display , d, gc, x, y, width ,

height , anglel , angle2)

Display * display ;

Drawable d,

GC gc;

int x, y;

unsigned int width , height ;

int anglel , angle2 ;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

X

y Specify the x and y coordinates, which are relative to the origin of the
drawable and specify the upper-left corner of the bounding rectangle.

width

height Specify the width and height, which are the major and minor axes of the arc.

anglel Specifies the start of the arc relative to the three-o’clock position from the
center, in units of degrees * 64.

angle2 Specifies the path and extent of the arc relative to the start of the arc, in units

of degrees * 64.
To draw multiple arcs in a given drawable, use XDrawArcs.

XDrawArcs(display , d, gc, arcs, narcs)
Display * display ;
Drawable d,

GC gc;
XArc * arcs ;
int narcs ;
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
arcs Specifies an array of arcs.
narcs Specifies the number of arcs in the array.

XDrawArc draws a single circular or elliptical arc, and XDrawArcs draws multiple circular or
elliptical arcs. Each arc is specified by a rectangle and two angles. The center of the circle or

Window Management (X11R5): Xlib - C Language Binding 163
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Drawing Points, Lines, Rectangles and Arcs Graphics Functions

ellipse is the center of the rectangle, and the major and minor axes are specified by the width and
height. Positive angles indicate counterclockwise motion, and negative angles indicate
clockwise motion. If the magnitude of angle2 is greater than 360 degrees, XDrawArc or
XDrawArcs truncates it to 360 degrees.

For an arc specified as [X, y, width, height, angle 1, angle 2], the origin of the major and minor

ngth Y+ helzght], and the infinitely thin path describing the entire circle or ellipse

axes is at [x+

intersects the horizontal axis at [x, y+ %] and [x+width, y+ %] and intersects the
vertical axis at [x+ ngth , y] and [x+ ngth , y+height]. These coordinates can be fractional and

so are not truncated to discrete coordinates. The path should be defined by the ideal
mathematical path. For a wide line with line-width lw, the bounding outlines for filling are
given by the two infinitely thin paths consisting of all points whose perpendicular distance from
the path of the circle/ellipse is equal to Iw/2 (which may be a fractional value). The cap-style
and join-style are applied the same as for a line corresponding to the tangent of the circle/Zellipse
at the endpoint.

For an arc specified as [x, y, width, height, angle 1, angle 2], the angles must be specified in the
effectively skewed coordinate system of the ellipse (for a circle, the angles and coordinate
systems are identical). The relationship between these angles and angles expressed in the
normal coordinate system of the screen (as measured with a protractor) is as follows:

width

skewed-angle = atan [tan(normal-angle) * height

+adjust

The skewed-angle and normal-angle are expressed in radians (rather than in degrees scaled by
64) in the range [0, 21 and where atan returns a value in the range [—g, g] and adjust is:

0 for normal-angle in the range [0, g]

1t for normal-angle in the range [g, %]

2nt for normal-angle in the range [%, 2]

For any given arc, XDrawArc and XDrawArcs do not draw a pixel more than once. If two arcs
join correctly and if the line-width is greater than zero and the arcs intersect, XDrawArc and
XDrawArcs do not draw a pixel more than once. Otherwise, the intersecting pixels of
intersecting arcs are drawn multiple times. Specifying an arc with one endpoint and a clockwise
extent draws the same pixels as specifying the other endpoint and an equivalent
counterclockwise extent, except as it affects joins.

If the last point in one arc coincides with the first point in the following arc, the two arcs will join
correctly. If the first point in the first arc coincides with the last point in the last arc, the two arcs
will join correctly. By specifying one axis to be zero, a horizontal or vertical line can be drawn.
Angles are computed based solely on the coordinate system and ignore the aspect ratio.

Both functions use these GC components: function, plane-mask, line-width, line-style, cap-style,
join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin and clip-mask. They also use
these GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-
origin, tile-stipple-y-origin, dash-offset and dash-list.

XDrawArc and XDrawArcs can generate BadDrawable, BadGC and BadMatch errors.

164 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Graphics Functions Filling Areas

9.4 Filling Areas
Xlib provides functions that you can use to fill;
« asingle rectangle or multiple rectangles
« asingle polygon

- asingle arc or multiple arcs.

9.4.1 Filling Single and Multiple Rectangles
To fill a single rectangular area in a given drawable, use XFillRectangle.

XFillRectangle(display , d, gc, x, YV,
width , height)
Display * display ;
Drawable d,

GC gc;
int x, y;
unsigned int width , height ;
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
X
y Specify the x and y coordinates, which are relative to the origin of the
drawable and specify the upper-left corner of the rectangle.
width
height Specify the width and height, which are the dimensions of the rectangle to be

filled.
To fill multiple rectangular areas in a given drawable, use XFillRectangles.

XFillRectangles(display , d, gc, rectangles , nrectangles)
Display * display ;
Drawable d,
GC gc;
XRectangle * rectangles ;
int nrectangles ;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

rectangles Specifies an array of rectangles.

nrectangles Specifies the number of rectangles in the array.

The XFillRectangle and XFillRectangles functions fill the specified rectangle or rectangles as if a
four-point FillPolygon protocol request were specified for each rectangle:

[%,y] [x+width,y] [x+width,y+height] [x,y+height]

Each function uses the x and y coordinates, width and height dimensions, and GC you specify.

Window Management (X11R5): Xlib - C Language Binding 165
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Filling Areas Graphics Functions

9.4.2

166

XFillRectangles fills the rectangles in the order listed in the array. For any given rectangle,
XFillRectangle and XFillRectangles do not draw a pixel more than once. If rectangles intersect, the
intersecting pixels are drawn multiple times.

Both functions use these GC components: function, plane-mask, fill-style, subwindow-mode,
clip-x-origin, clip-y-origin and clip-mask. They also use these GC mode-dependent components:
foreground, background, tile, stipple, tile-stipple-x-origin and tile-stipple-y-origin.

XFillRectangle and XFillRectangles can generate BadDrawable, BadGC and BadMatch errors.

Filling a Single Polygon
To fill a polygon area in a given drawable, use XFillPolygon.

XFillPolygon(display , d, gc, points , npoints ,
shape, mode
Display * display ;

Drawable d,
GC gc;
XPoint * points ;
int npoints ;
int shape;
int mode,
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
points Specifies an array of points.
npoints Specifies the number of points in the array.
shape Specifies a shape that helps the server to improve performance. You can pass

Complex, Convex or Nonconvex.

mode Specifies the coordinate mode. You can pass CoordModeOrigin or
CoordModePrevious.

XFillPolygon fills the region closed by the specified path. The path is closed automatically if the
last point in the list does not coincide with the first point. XFillPolygon does not draw a pixel of
the region more than once. CoordModeOrigin treats all coordinates as relative to the origin, and
CoordModePrevious treats all coordinates after the first as relative to the previous point.

Depending on the specified shape, the following occurs:

- If shape is Complex, the path may self-intersect. Note that contiguous coincident points in
the path are not treated as self-intersection.

. If shape is Convex, for every pair of points inside the polygon, the line segment connecting
them does not intersect the path. If known by the client, specifying Convex can improve
performance. If you specify Convex for a path that is not convex, the graphics results are
undefined.

- If shape is Nonconvex, the path does not self-intersect, but the shape is not wholly convex. If
known by the client, specifying Nonconvex instead of Complex may improve performance. If
you specify Nonconvex for a self-intersecting path, the graphics results are undefined.

The fill-rule of the GC controls the filling behaviour of self-intersecting polygons.

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Graphics Functions Filling Areas

This function uses these GC components: function, plane-mask, fill-style, fill-rule, subwindow-
mode, clip-x-origin, clip-y-origin and clip-mask. It also uses these GC mode-dependent
components; foreground, background, tile, stipple, tile-stipple-x-origin and tile-stipple-y-origin.

XFillPolygon can generate BadDrawable, BadGC, BadMatch and BadValue errors.

9.4.3 Filling Single and Multiple Arcs
To fill a single arc in a given drawable, use XFillArc.

XFillArc(display , d, gc, x, y, width ,

height , anglel , angle2)

Display * display ;

Drawable d,

GC gc;

int x, y;

unsigned int width , height ;

int anglel , angle2 ;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

X

y Specify the x and y coordinates, which are relative to the origin of the
drawable and specify the upper-left corner of the bounding rectangle.

width

height Specify the width and height, which are the major and minor axes of the arc.

anglel Specifies the start of the arc relative to the three-o’clock position from the
center, in units of degrees * 64.

angle2 Specifies the path and extent of the arc relative to the start of the arc, in units

of degrees * 64.
To fill multiple arcs in a given drawable, use XFillArcs.

XFillArcs(display , d, gc, arcs, narcs)
Display * display ;
Drawable d,

GC gc;
XArc * arcs ;
int narcs ;
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
arcs Specifies an array of arcs.
narcs Specifies the number of arcs in the array.

For each arc, XFillArc or XFillArcs fills the region closed by the infinitely thin path described by
the specified arc and, depending on the arc-mode specified in the GC, one or two line segments.
For ArcChord, the single line segment joining the endpoints of the arc is used. For ArcPieSlice, the
two line segments joining the endpoints of the arc with the center point are used. XFillArcs fills

Window Management (X11R5): Xlib - C Language Binding 167
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Filling Areas Graphics Functions

the arcs in the order listed in the array. For any given arc, XFillArc and XFillArcs do not draw a
pixel more than once. If regions intersect, the intersecting pixels are drawn multiple times.

Both functions use these GC components: function, plane-mask, fill-style, arc-mode,
subwindow-mode, clip-x-origin, clip-y-origin and clip-mask. They also use these GC mode-
dependent components: foreground, background, tile, stipple, tile-stipple-x-origin and tile-
stipple-y-origin.

XFillArc and XFillArcs can generate BadDrawable, BadGC and BadMatch errors.

168 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Graphics Functions Font Metrics

9.5 Font Metrics
A font is a graphical description of a set of characters that are used to increase efficiency
whenever a set of small, similar sized patterns are repeatedly used.
This section discusses how to:
- load and free fonts
» obtain and free font names
« compute character string sizes
- return logical extents
« query character string sizes.
The X server loads fonts whenever a program requests a new font. The server can cache fonts
for quick lookup. Fonts are global across all screens in a server. Several levels are possible when
dealing with fonts. Most applications simply use XLoadQueryFont to load a font and query the
font metrics.
Characters in fonts are regarded as masks. Except for image text requests, the only pixels
modified are those in which bits are set to 1 in the character. This means that it makes sense to
draw text using stipples or tiles (for example, many menus gray-out unusable entries).
The XFontStruct structure contains all of the information for the font and consists of the font-
specific information as well as a pointer to an array of XCharStruct structures for the characters
contained in the font. The XFontStruct, XFontProp and XCharStruct structures contain:
typedef struct {
short Ibearing; [* origin to left edge of raster */
short rbearing; [* origin to right edge of raster */
short width; /* advance to next char's origin */
short ascent; [* baseline to top edge of raster */
short descent; [* baseline to bottom edge of
raster */
unsigned short attributes; /* per char flags (not predefined) */
} XCharStruct;
typedef struct {
Atom name,
unsigned long card32;
} XFontProp;
typedef struct { /* normal 16 bit characters are two bytes */
unsigned char bytel;
unsigned char byte2;
} XChar2b;
Window Management (X11R5): Xlib - C Language Binding 169

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Font Metrics Graphics Functions

typedef struct {

XExtData *ext_data; /* hook for extension to hang
data */

Font fid; /* Font id for this font */

unsigned direction; /* hint about the direction font
is painted */

unsigned min_char_or_byte2; /* first character */
unsigned max_char_or_byte2; /* last character */

unsigned min_bytel; [* first row that exists */

unsigned max_bytel; /* last row that exists */

Bool all_chars_exist; /* flag if all characters have
non-zero size */

unsigned default_char; [* char to print for undefined
character */

int n_properties; /* how many properties there are */

XFontProp *properties; [* pointer to array of additional
properties */

XCharStruct min_bounds; /* minimum bounds over all existing
char */

XCharStruct max_bounds; /* maximum bounds over all existing
char */

XCharStruct *per_char; [* first_char to last_char
information */

int ascent; /* logical extent above baseline
for spacing */

int descent; /* logical decent below baseline

for spacing */
} XFontStruct;

X supports single byte/character, two bytes/character matrix and 16-bit character text
operations. Note that any of these forms can be used with a font, but a single byte/character text
request can only specify a single byte (that is, the first row of a 2-byte font). You should view 2-
byte fonts as a two-dimensional matrix of defined characters: bytel specifies the range of defined
rows and byte2 defines the range of defined columns of the font. Single byte/character fonts
have one row defined, and the byte2 range specified in the structure defines a range of
characters.

The bounding box of a character is defined by the XCharStruct of that character. When
characters are absent from a font, the default_char is used. When fonts have all characters of the
same size, only the information in the XFontStruct min and max bounds are used.

The members of the XFontStruct have the following semantics:

« The direction member can be either FontLeftToRight or FontRightToLeft. It is just a hint as to
whether most XCharStruct elements have a positive (FontLeftToRight) or a negative
(FontRightTolLeft) character width metric. The core protocol defines no support for vertical
text.

. If the min_bytel and max_bytel members are both zero, min_char_or_byte2 specifies the
linear character index corresponding to the first element of the per_char array, and
max_char_or_byte2 specifies the linear character index of the last element.

If either min_bytel or max_bytel are non-zero, both min_char _or _byte2 and
max_char_or_byte2 are less than 256, and the 2-byte character index values corresponding to
the per_char array element N (counting from 0) are:

170 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.0.

Graphics Functions Font Metrics

bytel = N/D + min_bytel
byte2 = N\D + min_char_or_byte2
where:
D = max_char_or_byte2 — min_char_or_byte2 + 1

/ = integer division
\ = integer modulus

. If the per_char pointer is NULL, all glyphs between the first and last character indexes
inclusive have the same information, as given by both min_bounds and max_bounds.

- If all_chars_exist is True, all characters in the per_char array have non-zero bounding boxes.

- The default_char member specifies the character that will be used when an undefined or
nonexistent character is printed. The default char is a 16-bit character (not a 2-byte
character). For a font using 2-byte matrix format, the default char has bytel in the most-
significant byte and byte2 in the least-significant byte. If the default _char itself specifies an
undefined or nonexistent character, no printing is performed for an undefined or nonexistent
character.

« The min_bounds and max_bounds members contain the most extreme values of each
individual XCharStruct component over all elements of this array (and ignore nonexistent
characters). The bounding box of the font (the smallest rectangle enclosing the shape
obtained by superimposing all of the characters at the same origin [X,y]) has its upper-left
coordinate at:

[x + min_bounds.lbearing, y — max_bounds.ascent]
Its width is:

max_bounds.rbearing — min_bounds.lbearing
Its height is:

max_bounds.ascent + max_bounds.descent

- The ascent member is the logical extent of the font above the baseline that is used for
determining line spacing. Specific characters may extend beyond this.

- The descent member is the logical extent of the font at or below the baseline that is used for
determining line spacing. Specific characters may extend beyond this.

- If the baseline is at Y-coordinate y, the logical extent of the font is inclusive between the Y-
coordinate values (y — font.ascent) and (y + font.descent — 1). Typically, the minimum
interline spacing between rows of text is given by ascent + descent.

For a character origin at [x,y], the bounding box of a character (that is, the smallest rectangle that
encloses the character’s shape) described in terms of XCharStruct components is a rectangle with
its upper-left corner at;

[x + Ibearing, y — ascent]
Its width is:

rbearing - lbearing
Its height is:

ascent + descent

The origin for the next character is defined to be:

Window Management (X11R5): Xlib - C Language Binding 171
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Font Metrics Graphics Functions

9.5.1

172

[x + width, y]

The Ibearing member defines the extent of the left edge of the character ink from the origin. The
rbearing member defines the extent of the right edge of the character ink from the origin. The
ascent member defines the extent of the top edge of the character ink from the origin. The
descent member defines the extent of the bottom edge of the character ink from the origin. The
width member defines the logical width of the character.

Note that the baseline (the y position of the character origin) is logically viewed as being the
scanline just below non-descending characters. When descent is zero, only pixels with Y-
coordinates less than y are drawn, and the origin is logically viewed as being coincident with the
left edge of a non-kerned character. When Ibearing is zero, no pixels with X-coordinate less than
x are drawn. Any of the XCharStruct metric members could be negative. If the width is
negative, the next character will be placed to the left of the current origin.

The X protocol does not define the interpretation of the attributes member in the XCharStruct
structure. A nonexistent character is represented with all members of its XCharStruct set to zero.

A font is not guaranteed to have any properties. The interpretation of the property value (for
example, long or unsigned long) must be derived from a priori knowledge of the property. A
basic set of font properties is specified in the XLFD specification.

Loading and Freeing Fonts

Xlib provides functions that you can use to load fonts, get font information, unload fonts and
free font information. A few font functions use a GContext resource ID or a font ID
interchangeably.

To load a given font, use XLoadFont.

Font XLoadFont(display , name
Display * display ;
char * name

display Specifies the connection to the X server.
name Specifies the name of the font, which is a null-terminated string.

The XLoadFont function loads the specified font and returns its associated font ID. If the font
name is not in the Host Portable Character Encoding the result is implementation-dependent.
Use of upper case or lower case does not matter. The interpretation of characters *?”’ and “*’ in
the name is not defined by the core protocol but is reserved for future definition. A structured
format for font names is specified in the XLFD specification. If XLoadFont was unsuccessful at
loading the specified font, a BadName error results. Fonts are not associated with a particular
screen and can be stored as a component of any GC. When the font is no longer needed, call
XUnloadFont.

XLoadFont can generate BadAlloc and BadName errors.
To return information about an available font, use XQueryFont.

XFontStruct *XQueryFont(display , font ID)
Display * display ;

XID font ID ;
display Specifies the connection to the X server.
font_ID Specifies the font ID or the GContext ID.

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Graphics Functions Font Metrics

The XQueryFont function returns a pointer to the XFontStruct structure, which contains
information associated with the font. You can query a font or the font stored in a GC. The font
ID stored in the XFontStruct structure will be the GContext ID, and you need to be careful when
using this ID in other functions (see XGContextFromGC). If the font does not exist, XQueryFont
returns NULL. To free this data, use XFreeFontinfo.

To perform a XLoadFont and XQueryFont in a single operation, use XLoadQueryFont.

XFontStruct *XLoadQueryFont(display , name)
Display * display ;
char * name

display Specifies the connection to the X server.
name Specifies the name of the font, which is a null-terminated string.

The XLoadQueryFont function provides the most common way for accessing a font.
XLoadQueryFont both opens (loads) the specified font and returns a pointer to the appropriate
XFontStruct structure. If the font name is not in the Host Portable Character Encoding the result
is implementation-dependent. If the font does not exist, XLoadQueryFont returns NULL.

XLoadQueryFont can generate a BadAlloc error.

To unload the font and free the storage used by the font structure that was allocated by
XQueryFont or XLoadQueryFont, use XFreeFont.

XFreeFont(display , font struct)
Display * display ;
XFontStruct * font_struct ;

display Specifies the connection to the X server.
font_struct Specifies the storage associated with the font.

The XFreeFont function deletes the association between the font resource ID and the specified
font and frees the XFontStruct structure. The font itself will be freed when no other resource
references it. The data and the font should not be referenced again.

XFreeFont can generate a BadFont error.

To return a given font property, use XGetFontProperty.

Bool XGetFontProperty(font_struct , atom, value return)
XFontStruct * font_struct ;
Atom atom;,
unsigned long * value return ;
font_struct Specifies the storage associated with the font.
atom Specifies the atom for the property name you want returned.
value_return Returns the value of the font property.

Given the atom for that property, the XGetFontProperty function returns the value of the
specified font property. XGetFontProperty also returns False if the property was not defined or
True if it was defined. A set of predefined atoms exists for font properties, which can be found in
<X11/Xatom.h>. This set contains the standard properties associated with a font. Although it is
not guaranteed, it is likely that the predefined font properties will be present.

To unload a font that was loaded by XLoadFont, use XUnloadFont.

Window Management (X11R5): Xlib - C Language Binding 173
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Font Metrics Graphics Functions

9.5.2

174

XUnloadFont(display , font)
Display * display ;

Font font ;
display Specifies the connection to the X server.
font Specifies the font.

The XUnloadFont function deletes the association between the font resource ID and the specified
font. The font itself will be freed when no other resource references it. The font should not be
referenced again.

XUnloadFont can generate a BadFont error.

Obtaining and Freeing Font Names and Information

You obtain font names and information by matching a wildcard specification when querying a
font type for a list of available sizes and so on.

To return a list of the available font names, use XListFonts.

char **XListFonts(display , pattern , maxnames,
actual_count return)
Display * display ;
char * pattern ;
int maxnames,
int * actual_count return ;

display Specifies the connection to the X server.

pattern Specifies the null-terminated pattern string that can contain wildcard
characters.

maxnames Specifies the maximum number of names to be returned.

actual_count_return Returns the actual number of font names.

The XListFonts function returns an array of available font names (as controlled by the font search
path; see XSetFontPath) that match the string you passed to the pattern argument. The pattern
string can contain any characters, but each asterisk (*) is a wildcard for any number of
characters, and each question mark (?) is a wildcard for a single character. If the pattern string is
not in the Host Portable Character Encoding the result is implementation-dependent. Use of
upper case or lower case does not matter. Each returned string is null-terminated. If the data
returned by the server is in the Latin Portable Character Encoding, then the returned strings are
in the Host Portable Character Encoding. Otherwise, the result is implementation-dependent. If
there are no matching font names, XListFonts returns NULL. The client should call
XFreeFontNames when finished with the result to free the memory.

To free a font name array, use XFreeFontNames.

XFreeFontNames(list)
char * list [];

list Specifies the array of strings you want to free.

The XFreeFontNames function frees the array and strings returned by XListFonts or
XListFontsWithinfo.

To obtain the names and information about available fonts, use XListFontsWithInfo.

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Graphics Functions Font Metrics

char **XListFontsWithInfo(display , pattern , maxnames,
count return , info_return)
Display * display ;
char * pattern ;
int maxnames,
int * count return
XFontStruct ** info_return ;

display Specifies the connection to the X server.

pattern Specifies the null-terminated pattern string that can contain wildcard
characters.

maxnames Specifies the maximum number of names to be returned.

count_return Returns the actual number of matched font names.

info_return Returns the font information.

The XListFontsWithInfo function returns a list of font names that match the specified pattern and
their associated font information. The list of names is limited to size specified by maxnames.
The information returned for each font is identical to what XLoadQueryFont would return except
that the per-character metrics are not returned. The pattern string can contain any characters,
but each asterisk (*) is a wildcard for any number of characters, and each question mark (?) is a
wildcard for a single character. If the pattern string is not in the Host Portable Character
Encoding the result is implementation-dependent. Use of upper case or lower case does not
matter. Each returned string is null-terminated. If the data returned by the server is in the Latin
Portable Character Encoding, then the returned strings are in the Host Portable Character
Encoding. Otherwise, the result is implementation-dependent. If there are no matching font
names, XListFontsWithinfo returns NULL.

To free only the allocated name array, the client should call XFreeFontNames. To free both the
name array and the font information array, or to free just the font information array, the client
should call XFreeFontinfo.

To free the the font information array, use XFreeFontInfo.

XFreeFontinfo(names, free info , actual count)
char ** names,
XFontStruct * free info ;
int actual_count

names Specifies the list of font names returned by XListFontsWithinfo.
free_info Specifies the font information returned by XListFontsWithiInfo.
actual_count Specifies the actual number of matched font names returned by

XListFontsWithInfo.

The XFreeFontinfo function frees the the font information array. To free an XFontStruct structure
without closing the font, call XFreeFontinfo with the names argument specified as NULL.

Window Management (X11R5): Xlib - C Language Binding 175
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Font Metrics Graphics Functions

9.5.3

9.54

176

Computing Character String Sizes

Xlib provides functions that you can use to compute the width, the logical extents, and the
server information about 8-bit and 2-byte text strings. The width is computed by adding the
character widths of all the characters. It does not matter if the font is an 8-bit or 2-byte font.
These functions return the sum of the character metrics, in pixels.

To determine the width of an 8-bit character string, use XTextWidth.

int XTextWidth(font_struct , String , count)
XFontStruct * font_struct ;
char * string ;

int count ;
font_struct Specifies the font used for the width computation.
string Specifies the character string.
count Specifies the character count in the specified string.

To determine the width of a 2-byte character string, use XTextWidth16.

int XTextWidth16(font_struct , String , count)
XFontStruct * font_struct ;
XChar2b * string ;

int count ;
font_struct Specifies the font used for the width computation.
string Specifies the character string.
count Specifies the character count in the specified string.

Computing Logical Extents

To compute the bounding box of an 8-bit character string in a given font, use XTextExtents.

XTextExtents(font_struct , String , nchars ,
direction_return , font _ascent return ,
font_descent return , overall _return)

XFontStruct * font_struct ;
char * string ;

int nchars ;
int * direction_return ;
int * font ascent return , * font_descent return ;
XCharStruct * overall_return ;
font_struct Specifies the XFontStruct structure.
string Specifies the character string.
nchars Specifies the number of characters in the character string.

direction_return Returns the value of the direction hint (FontLeftToRight or FontRightToLeft).
font_ascent_return Returns the font ascent.

font_descent_return
Returns the font descent.

overall_return Returns the overall size in the specified XCharStruct structure.

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Graphics Functions Font Metrics

9.5.5

To compute the bounding box of a 2-byte character string in a given font, use XTextExtents16.

XTextExtents1l6(font struct , String , nchars ,
direction_return , font _ascent return ,
font_descent return , overall _return)

XFontStruct * font_struct ;
XChar2b * string ;

int nchars ;
int * direction_return ;
int * font ascent return , * font_descent return ;
XCharStruct * overall_return ;
font_struct Specifies the XFontStruct structure.
string Specifies the character string.
nchars Specifies the number of characters in the character string.

direction_return Returns the value of the direction hint (FontLeftToRight or FontRightToLeft).
font_ascent_return Returns the font ascent.

font_descent_return
Returns the font descent.

overall_return Returns the overall size in the specified XCharStruct structure.

The XTextExtents and XTextExtentsl6 functions perform the size computation locally and,
thereby, avoid the round-trip overhead of XQueryTextExtents and XQueryTextExtents16. Both
functions return an XCharStruct structure, whose members are set to the values as follows.

The ascent member is set to the maximum of the ascent metrics of all characters in the string.
The descent member is set to the maximum of the descent metrics. The width member is set to
the sum of the character-width metrics of all characters in the string. For each character in the
string, let W be the sum of the character-width metrics of all characters preceding it in the string.
Let L be the left-side-bearing metric of the character plus W. Let R be the right-side-bearing
metric of the character plus W. The Ibearing member is set to the minimum L of all characters in
the string. The rbearing member is set to the maximum R.

For fonts defined with linear indexing rather than 2-byte matrix indexing, each XChar2h
structure is interpreted as a 16-bit number with bytel as the most-significant byte. If the font has
no defined default character, undefined characters in the string are taken to have all zero metrics.

Querying Character String Sizes

To query the server for the bounding box of an 8-bit character string in a given font, use
XQueryTextExtents.

XQueryTextExtents(display , font ID , string , nchars ,
direction_return , font _ascent return ,
font_descent return , overall _return)

Display * display ;

XID font ID ;

char * string ;

int nchars ;

int * direction_return ;

int * font ascent return , * font_descent return ;
XCharStruct * overall_return ;

Window Management (X11R5): Xlib - C Language Binding 177
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Font Metrics Graphics Functions

display Specifies the connection to the X server.

font_ID Specifies either the font ID or the GContext ID that contains the font.
string Specifies the character string.

nchars Specifies the number of characters in the character string.

direction_return Returns the value of the direction hint (FontLeftToRight or FontRightToLeft).
font_ascent_return Returns the font ascent.

font_descent_return
Returns the font descent.

overall_return Returns the overall size in the specified XCharStruct structure.
To query the server for the bounding box of a 2-byte character string in a given font, use
XQueryTextExtents16.
XQueryTextExtents16(display , font ID , string , nchars ,
direction_return , font _ascent return ,
font_descent return , overall _return)
Display * display ;
XID font ID ;
XChar2b * string ;
int nchars ;
int * direction_return ;
int * font ascent return , * font_descent return ;
XCharStruct * overall_return ;
display Specifies the connection to the X server.
font_ID Specifies either the font ID or the GContext ID that contains the font.
string Specifies the character string.
nchars Specifies the number of characters in the character string.

direction_return Returns the value of the direction hint (FontLeftToRight or FontRightToLeft).
font_ascent_return Returns the font ascent.

font_descent_return
Returns the font descent.

overall_return Returns the overall size in the specified XCharStruct structure.

The XQueryTextExtents and XQueryTextExtentsl6 functions return the bounding box of the
specified 8-bit and 16-bit character string in the specified font or the font contained in the
specified GC. These functions query the X server and, therefore, suffer the round-trip overhead
that is avoided by XTextExtents and XTextExtentsl6. Both functions return a XCharStruct
structure, whose members are set to the values as follows.

The ascent member is set to the maximum of the ascent metrics of all characters in the string.
The descent member is set to the maximum of the descent metrics. The width member is set to
the sum of the character-width metrics of all characters in the string. For each character in the
string, let W be the sum of the character-width metrics of all characters preceding it in the string.
Let L be the left-side-bearing metric of the character plus W. Let R be the right-side-bearing
metric of the character plus W. The Ibearing member is set to the minimum L of all characters in
the string. The rbearing member is set to the maximum R.

178 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Graphics Functions Font Metrics

For fonts defined with linear indexing rather than 2-byte matrix indexing, each XChar2h
structure is interpreted as a 16-bit number with bytel as the most-significant byte. If the font has
no defined default character, undefined characters in the string are taken to have all zero metrics.

Characters with all zero metrics are ignored. If the font has no defined default char, the
undefined characters in the string are also ignored.

XQueryTextExtents and XQueryTextExtents16 can generate BadFont and BadGC errors.

Window Management (X11R5): Xlib - C Language Binding 179
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Drawing Text Graphics Functions

9.6 Drawing Text
This section discusses how to draw:
« complex text
« text characters
- image text characters.
The fundamental text functions XDrawText and XDrawText16 use the following structures.

typedef struct {

char *chars; /* pointer to string */

int nchars; /* number of characters */

int delta; [* delta between strings */

Font font; /* Font to print it in, None don't change */
} XTextltem;

typedef struct {
XChar2b *chars; /* pointer to two-byte characters */

int nchars; /* number of characters */
int delta; [* delta between strings */
Font font; /* font to print it in, None don't change */

} XTextltem16;

If the font member is not None, the font is changed before printing and also is stored in the GC.
If an error was generated during text drawing, the previous items may have been drawn. The
baseline of the characters are drawn starting at the x and y coordinates that you pass in the text
drawing functions.

For example, consider the background rectangle drawn by XDrawlmageString. If you want the
upper-left corner of the background rectangle to be at pixel coordinate (x,y), pass the (x,y +
ascent) as the baseline origin coordinates to the text functions. The ascent is the font ascent, as
given in the XFontStruct structure. If you want the lower-left corner of the background rectangle
to be at pixel coordinate (X,y), pass the (x,y — descent + 1) as the baseline origin coordinates to
the text functions. The descent is the font descent, as given in the XFontStruct structure.

9.6.1 Drawing Complex Text
To draw 8-bit characters in a given drawable, use XDrawText.

XDrawText(display , d, gc, x, y, items , nitems)
Display * display ;

Drawable d,
GC gc;
int X, y;
XTextltem * jtems ;
int nitems ;
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
X
y Specify the x and y coordinates, which are relative to the origin of the
specified drawable and define the origin of the first character.
180 X/Open CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.0.

Graphics Functions Drawing Text

9.6.2

items Specifies an array of text items.
nitems Specifies the number of text items in the array.
To draw 2-byte characters in a given drawable, use XDrawText16.

XDrawTextl6(display , d, gc, x, y, items , nitems)
Display * display ;
Drawable d,

GC gc;
int X, y;
XTextltem16 * ijtems ;
int nitems ;
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
X
y Specify the x and y coordinates, which are relative to the origin of the
specified drawable and define the origin of the first character.
items Specifies an array of text items.
nitems Specifies the number of text items in the array.

The XDrawText16 function is similar to XDrawText except that it uses 2-byte or 16-bit characters.
Both functions allow complex spacing and font shifts between counted strings.

Each text item is processed in turn. A font member other than None in an item causes the font to
be stored in the GC and used for subsequent text. A text element delta specifies an additional
change in the position along the x axis before the string is drawn. The delta is always added to
the character origin and is not dependent on any characteristics of the font. Each character
image, as defined by the font in the GC, is treated as an additional mask for a fill operation on
the drawable. The drawable is modified only where the font character has a bit set to 1. If a text
item generates a BadFont error, the previous text items may have been drawn.

For fonts defined with linear indexing rather than 2-byte matrix indexing, each XChar2h
structure is interpreted as a 16-bit number with bytel as the most-significant byte.

Both functions use these GC components; function, plane-mask, fill-style, font, subwindow-
mode, clip-x-origin, clip-y-origin and clip-mask. They also use these GC mode-dependent
components; foreground, background, tile, stipple, tile-stipple-x-origin and tile-stipple-y-origin.

XDrawText and XDrawText16 can generate BadDrawable, BadFont, BadGC and BadMatch errors.

Drawing Text Characters
To draw 8-bit characters in a given drawable, use XDrawString.

XDrawString(display , d, gc, x, y, string , length)
Display * display ;
Drawable d,
GC gc;
int X, y;
char * string ;
int length ;

Window Management (X11R5): Xlib - C Language Binding 181
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Drawing Text Graphics Functions

9.6.3

182

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

X

y Specify the x and y coordinates, which are relative to the origin of the
specified drawable and define the origin of the first character.

string Specifies the character string.

length Specifies the number of characters in the string argument.

To draw 2-byte characters in a given drawable, use XDrawString16.
XDrawStringl6(display , d, gc, x, y, string , length)
Display * display ;
Drawable d,

GC gc;
int X, y;
XChar2b * string ;
int length ;
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
X
y Specify the x and y coordinates, which are relative to the origin of the
specified drawable and define the origin of the first character.
string Specifies the character string.
length Specifies the number of characters in the string argument.

Each character image, as defined by the font in the GC, is treated as an additional mask for a fill
operation on the drawable. The drawable is modified only where the font character has a bit set
to 1. For fonts defined with 2-byte matrix indexing and used with XDrawString16, each byte is
used as a byte2 with a bytel of zero.

Both functions use these GC components; function, plane-mask, fill-style, font, subwindow-
mode, clip-x-origin, clip-y-origin and clip-mask. They also use these GC mode-dependent
components; foreground, background, tile, stipple, tile-stipple-x-origin and tile-stipple-y-origin.

XDrawString and XDrawString16 can generate BadDrawable, BadGC and BadMatch errors.

Drawing Image Text Characters

Some applications, in particular terminal emulators, need to print image text in which both the
foreground and background bits of each character are painted. This prevents annoying flicker
on many displays.

To draw 8-bit image text characters in a given drawable, use XDrawlmageString.

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.0.

Graphics Functions

XDrawlmageString(display , d, gc, x, V,

Display * display ;
Drawable d;

Drawing Text

string , length)

GC gc;
int X, y;
char * string ;
int length ;
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
X
y Specify the x and y coordinates, which are relative to the origin of the
specified drawable and define the origin of the first character.
string Specifies the character string.
length Specifies the number of characters in the string argument.

To draw 2-byte image text characters in a given drawable, use XDrawlmageString16.

XDrawlmageStringl6(display , d, gc,
Display * display ;
Drawable d,

X, Yy, string , length)

GC gc;
int X, y;
XChar2b * string ;
int length ;
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
X
y Specify the x and y coordinates, which are relative to the origin of the
specified drawable and define the origin of the first character.
string Specifies the character string.
length Specifies the number of characters in the string argument.

The XDrawlmageStringl6 function is similar to XDrawlmageString except that it uses 2-byte or
16-bit characters. Both functions also use both the foreground and background pixels of the GC

in the destination.

The effect is first to fill a destination rectangle with the background pixel defined in the GC and
then to paint the text with the foreground pixel. The upper-left corner of the filled rectangle is

at:
[x, y - font-ascent]
The width is:
overall-width
The height is:

Window Management (X11R5): Xlib - C Language Binding
0 1995, X/Open Company Limited.

183
Stamp:X XXX XX XXX XX XX XXX XX XXKXXXX

Drawing Text Graphics Functions

font-ascent + font-descent

The overall-width, font-ascent and font-descent are as would be returned by XQueryTextExtents
using gc and string. The function and fill-style defined in the GC are ignored for these functions.
The effective function is GXcopy, and the effective fill-style is FillSolid.

For fonts defined with 2-byte matrix indexing and used with XDrawlmageString, each byte is
used as a byte2 with a bytel of zero.

Both functions use these GC components: plane-mask, foreground, background, font,
subwindow-mode, clip-x-origin, clip-y-origin and clip-mask.

XDrawlmageString and XDrawlmageStringl6 can generate BadDrawable, BadGC and BadMatch
errors.

184 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.0.

Graphics Functions Transferring Images between Client and Server

9.7

Transferring Images between Client and Server

Xlib provides functions that you can use to transfer images between a client and the server.
Because the server may require diverse data formats, Xlib provides an image object that fully
describes the data in memory and that provides for basic operations on that data. You should
reference the data through the image object rather than referencing the data directly. However,
some implementations of the Xlib library may efficiently deal with frequently used data formats
by replacing functions in the procedure vector with special case functions. Supported
operations include destroying the image, getting a pixel, storing a pixel, extracting a subimage of
an image, and adding a constant to an image (see Section 17.5).

All the image manipulation functions discussed in this section make use of the Xlmage data
structure, which describes an image as it exists in the client’s memory.

typedef struct _Xlmage {
int width, height; [* size of image */
int xoffset; /* number of pixels offset in X
direction */
int format; /* XYBitmap, XYPixmap, ZPixmap */
char *data; [* pointer to image data */
int byte_order; /* data byte order, LSBFirst,
MSBFirst */
int bitmap_unit; [* quant. of scanline 8, 16, 32 */
int bitmap_bit_order; [* LSBFirst, MSBFirst */
int bitmap_pad,; [* 8, 16, 32 either XY or ZPixmap */
int depth; /* depth of image */
int bytes_per_line; /* accelerator to next scanline */
int bits_per_pixel; /* bits per pixel (ZPixmap) */
unsigned long red_mask; [* bits in z arrangement */
unsigned long green_mask;
unsigned long blue_mask;
XPointer obdata; /* hook for the object routines to
hang on */
struct funcs { /* image manipulation routines */
struct _XIimage *(*create_image)();
int (*destroy_image)();
unsigned long (*get_pixel)();
int (*put_pixel)();
struct _XIimage *(*sub_image)();
int (*add_pixel)();
J
} Ximage;

You may request that some of the members (for example, height, width and xoffset) be changed
when the image is sent to the server. That is, you may send a subset of the image. Other
members (for example, byte_order, bitmap_unit, and so on) are characteristics of both the image
and the server. If these members differ between the image and the server, XPutlmage makes the
appropriate conversions. The first byte of the first scanline of plane n is located at the address
(data + (n * height * bytes_per_line)).

To combine an image in memory with a rectangle of a drawable on the display, use XPutimage.

Window Management (X11R5): Xlib - C Language Binding 185
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Transferring Images between Client and Server Graphics Functions

186

XPutlmage(display , d, gc, image, src x ,
src y , dest x , desty , width , height)
Display * display ;
Drawable d,
GC gc;
Xlmage * image;
int src x, srcy;
int dest x , desty ;
unsigned int width , height ;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

image Specifies the image you want combined with the rectangle.

Src_x Specifies the offset in X from the left edge of the image defined by the XImage
data structure.

src_y Specifies the offset in Y from the top edge of the image defined by the XImage
data structure.

dest_x

dest y Specify the x and y coordinates, which are relative to the origin of the
drawable and are the coordinates of the subimage.

width

height Specify the width and height of the subimage, which define the dimensions of

the rectangle.

The XPutlmage function combines an image in memory with a rectangle of the specified
drawable. If XYBitmap format is used, the depth of the image must be one, or a BadMatch error
results. The foreground pixel in the GC defines the source for the one bits in the image, and the
background pixel defines the source for the zero bits. For XYPixmap and ZPixmap, the depth of
the image must match the depth of the drawable, or a BadMatch error results. The section of the
image defined by the src_x, src_y, width and height arguments is drawn on the specified part of
the drawable.

This function uses these GC components: function, plane-mask, subwindow-mode, clip-x-
origin, clip-y-origin and clip-mask. It also uses these GC mode-dependent components:
foreground and background.

XPutlmage can generate BadDrawable, BadGC, BadMatch and BadValue errors.

To return the contents of a rectangle in a given drawable on the display, use XGetlmage. This
function specifically supports rudimentary screen dumps.

Xlmage *XGetlmage(display , d, x, y, width ,
height , plane_mask , format)

Display * display ;
Drawable d,
int X, y;
unsigned int width , height ;
unsigned long plane_mask ;
int format ;

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Graphics Functions Transferring Images between Client and Server

display Specifies the connection to the X server.

d Specifies the drawable.

X

y Specify the x and y coordinates, which are relative to the origin of the
drawable and define the upper-left corner of the rectangle.

width

height Specify the width and height of the subimage, which define the dimensions of
the rectangle.

plane_mask Specifies the plane mask.

format Specifies the format for the image. You can pass XYPixmap or ZPixmap.

The XGetlmage function returns a pointer to an Ximage structure. This structure provides you
with the contents of the specified rectangle of the drawable in the format you specify. If the
format argument is XYPixmap, the image contains only the bit planes you passed to the
plane_mask argument. If the plane_mask argument only requests a subset of the planes of the
display, the depth of the returned image will be the number of planes requested. If the format
argument is ZPixmap, XGetlmage returns as zero the bits in all planes not specified in the
plane_mask argument. The function performs no range checking on the values in plane_mask
and ignores extraneous bits.

XGetlmage returns the depth of the image to the depth member of the Xlmage structure. The
depth of the image is as specified when the drawable was created, except when getting a subset
of the planes in XYPixmap format, when the depth is given by the number of bits set to 1 in
plane_mask.

If the drawable is a pixmap, the given rectangle must be wholly contained within the pixmap, or
a BadMatch error results. If the drawable is a window, the window must be viewable, and it
must be the case that if there were no inferiors or overlapping windows, the specified rectangle
of the window would be fully visible on the screen and wholly contained within the outside
edges of the window, or a BadMatch error results. Note that the borders of the window can be
included and read with this request. If the window has backing-store, the backing-store contents
are returned for regions of the window that are obscured by non-inferior windows. If the
window does not have backing-store, the returned contents of such obscured regions are
undefined. The returned contents of visible regions of inferiors of a different depth than the
specified window's depth are also undefined. The pointer cursor image is not included in the
returned contents. If a problem occurs, XGetimage returns NULL.

XGetlmage can generate BadDrawable, BadMatch and BadValue errors.

To copy the contents of a rectangle on the display to a location within a preexisting image
structure, use XGetSublmage.

Window Management (X11R5): Xlib - C Language Binding 187
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Transferring Images between Client and Server Graphics Functions

Xlmage *XGetSublmage(display , d, x, y, width ,
height , plane_mask , format , dest image
dest x , dest y)

Display * display ;

Drawable d,

int X, y;

unsigned int width , height ;
unsigned long plane_mask ;
int format ;

Xlmage * dest image ;

int dest x , desty ;

display Specifies the connection to the X server.

d Specifies the drawable.

X

y Specify the x and y coordinates, which are relative to the origin of the
drawable and define the upper-left corner of the rectangle.

width

height Specify the width and height of the subimage, which define the dimensions of
the rectangle.

plane_mask Specifies the plane mask.

format Specifies the format for the image. You can pass XYPixmap or ZPixmap.

dest_image Specify the destination image.

dest_x

dest y Specify the x and y coordinates, which are relative to the origin of the

destination rectangle, specify its upper-left corner, and determine where the
subimage is placed in the destination image.

The XGetSublmage function updates dest_image with the specified subimage in the same manner
as XGetlmage. If the format argument is XYPixmap, the image contains only the bit planes you
passed to the plane_mask argument. If the format argument is ZPixmap, XGetSublmage returns
as zero the bits in all planes not specified in the plane_mask argument. The function performs
no range checking on the values in plane_mask and ignores extraneous bits. As a convenience,
XGetSublmage returns a pointer to the same Xlmage structure specified by dest_image.

The depth of the destination XImage structure must be the same as that of the drawable. If the
specified subimage does not fit at the specified location on the destination image, the right and
bottom edges are clipped. If the drawable is a pixmap, the given rectangle must be wholly
contained within the pixmap, or a BadMatch error results. If the drawable is a window, the
window must be viewable, and it must be the case that if there were no inferiors or overlapping
windows, the specified rectangle of the window would be fully visible on the screen and wholly
contained within the outside edges of the window, or a BadMatch error results. If the window
has backing-store, then the backing-store contents are returned for regions of the window that
are obscured by non-inferior windows. If the window does not have backing-store, the returned
contents of such obscured regions are undefined. The returned contents of visible regions of
inferiors of a different depth than the specified window’'s depth are also undefined. If a problem
occurs, XGetSublmage returns NULL.

XGetSublmage can generate BadDrawable, BadGC, BadMatch and BadValue errors.

188 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Chapter 10

Window and Session Manager Functions

Although it is difficult to categorize functions as exclusively for an application or a window
manager or a session manager, the functions in this chapter are most often used by window
managers and session managers. It is not expected that these functions will be used by most
application programs. Xlib provides management functions to:

« change the parent of a window

- control the lifetime of a window

« manage installed colormaps

. set and retrieve the font search path
« grab the server

» kill a client

- control the screen saver

. control host access.

Window Management (X11R5): Xlib - C Language Binding 189
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Changing the Parent of a Window Window and Session Manager Functions

10.1

190

Changing the Parent of a Window

To change a window's parent to another window on the same screen, use XReparentWindow.
There is no way to move a window between screens.

XReparentWindow(display , w parent , X, y)
Display * display ;

Window w
Window parent ;
int X, y;
display Specifies the connection to the X server.
w Specifies the window.
parent Specifies the parent window.
X
y Specify the x and y coordinates of the position in the new parent window.

If the specified window is mapped, XReparentWindow automatically performs an UnmapWindow
request on it, removes it from its current position in the hierarchy, and inserts it as the child of
the specified parent. The window is placed in the stacking order on top with respect to sibling
windows.

After reparenting the specified window, XReparentWindow causes the X server to generate a
ReparentNotify event. The override_redirect member returned in this event is set to the window’s
corresponding attribute. Window manager clients usually should ignore this window if this
member is set to True. Finally, if the specified window was originally mapped, the X server
automatically performs a MapWindow request on it.

The X server performs normal exposure processing on formerly obscured windows. The X
server might not generate Expose events for regions from the initial UnmapWindow request that
are immediately obscured by the final MapWindow request. A BadMatch error results if:

- The new parent window is not on the same screen as the old parent window.
« The new parent window is the specified window or an inferior of the specified window.
« The new parent is InputOnly and the window is not.

- The specified window has a ParentRelative background, and the new parent window is not
the same depth as the specified window.

XReparentWindow can generate BadMatch and BadWindow errors.

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Window and Session Manager Functions Controlling the Lifetime of a Window

10.2 Controlling the Lifetime of a Window

The save-set of a client is a list of other clients’ windows that, if they are inferiors of one of the
client’s windows at connection close, should not be destroyed and should be remapped if they
are unmapped. For further information about close-connection processing, see Section 3.6. To
allow an application’s window to survive when a window manager that has reparented a
window fails, Xlib provides the save-set functions that you can use to control the longevity of
subwindows that are normally destroyed when the parent is destroyed. For example, a window
manager that wants to add decoration to a window by adding a frame might reparent an
application’s window. When the frame is destroyed, the application’s window should not be
destroyed but be returned to its previous place in the window hierarchy.

The X server automatically removes windows from the save-set when they are destroyed.
To add or remove a window from the client’s save-set, use XChangeSaveSet.

XChangeSaveSet(display , w, change _mode)
Display * display ;
Window w
int change_mode ;

display Specifies the connection to the X server.

w Specifies the window that you want to add to or delete from the client’s save-
set.

change_mode Specifies the mode. You can pass SetModelnsert or SetModeDelete.

Depending on the specified mode, XChangeSaveSet either inserts or deletes the specified window
from the client’s save-set. The specified window must have been created by some other client, or
a BadMatch error results.

XChangeSaveSet can generate BadMatch, BadValue and BadWindow errors.
To add a window to the client’s save-set, use XAddToSaveSet.

XAddToSaveSet(display , w)
Display * display ;

Window w
display Specifies the connection to the X server.
w Specifies the window that you want to add to the client’s save-set.

The XAddToSaveSet function adds the specified window to the client’s save-set. The specified
window must have been created by some other client, or a BadMatch error results.

XAddToSaveSet can generate BadMatch and BadWindow errors.
To remove a window from the client’s save-set, use XRemoveFromSaveSet.

XRemoveFromSaveSet(display , w)
Display * display ;

Window w
display Specifies the connection to the X server.
w Specifies the window that you want to delete from the client’s save-set.
Window Management (X11R5): Xlib - C Language Binding 191

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Controlling the Lifetime of a Window Window and Session Manager Functions

The XRemoveFromSaveSet function removes the specified window from the client’s save-set. The
specified window must have been created by some other client, or a BadMatch error results.

XRemoveFromSaveSet can generate BadMatch and BadWindow errors.

192 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Window and Session Manager Functions Managing Installed Colormaps

10.3 Managing Installed Colormaps

The X server maintains a list of installed colormaps. Windows using these colormaps are
guaranteed to display with correct colors; windows using other colormaps may or may not
display with correct colors. Xlib provides functions that you can use to install a colormap,
uninstall a colormap, and obtain a list of installed colormaps.

At any time, there is a subset of the installed maps that is viewed as an ordered list and is called
the required list. The length of the required list is at most M, where M is the minimum number
of installed colormaps specified for the screen in the connection setup. The required list is
maintained as follows. When a colormap is specified to XlnstallColormap, it is added to the head
of the list; the list is truncated at the tail, if necessary, to keep its length to at most M. When a
colormap is specified to XUninstallColormap and it is in the required list, it is removed from the
list. A colormap is not added to the required list when it is implicitly installed by the X server,
and the X server cannot implicitly uninstall a colormap that is in the required list.

To install a colormap, use XlnstallColormap .

XlnstallColormap(display , colormap)
Display * display ;
Colormap colormap ;

display Specifies the connection to the X server.
colormap Specifies the colormap.

The XinstallColormap function installs the specified colormap for its associated screen. All
windows associated with this colormap immediately display with true colors. You associated
the windows with this colormap when you created them by calling XCreateWindow,
XCreateSimpleWindow, XChangeWindowAttributes or XSetWindowColormap.

If the specified colormap is not already an installed colormap, the X server generates a
ColormapNotify event on each window that has that colormap. In addition, for every other
colormap that is installed as a result of a call to XlInstallColormap, the X server generates a
ColormapNotify event on each window that has that colormap.

XlnstallColormap can generate a BadColor error.
To uninstall a colormap, use XUninstallColormap.

XUninstallColormap(display , colormap)
Display * display ;
Colormap colormap ;

display Specifies the connection to the X server.
colormap Specifies the colormap.

The XUninstallColormap function removes the specified colormap from the required list for its
screen. As a result, the specified colormap might be uninstalled, and the X server might
implicitly install or uninstall additional colormaps. Which colormaps get installed or uninstalled
is server-dependent except that the required list must remain installed.

If the specified colormap becomes uninstalled, the X server generates a ColormapNotify event on
each window that has that colormap. In addition, for every other colormap that is installed or
uninstalled as a result of a call to XUninstallColormap, the X server generates a ColormapNotify
event on each window that has that colormap.

XUninstallColormap can generate a BadColor error.

Window Management (X11R5): Xlib - C Language Binding 193
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Managing Installed Colormaps Window and Session Manager Functions

194

To obtain a list of the currently installed colormaps for a given screen, use
XListInstalledColormaps.

Colormap *XListInstalledColormaps(display , w, num_return)
Display * display ;
Window w
int * num_return ;
display Specifies the connection to the X server.
w Specifies the window that determines the screen.
num_return Returns the number of currently installed colormaps.

The XListlnstalledColormaps function returns a list of the currently installed colormaps for the
screen of the specified window. The order of the colormaps in the list is not significant and is no
explicit indication of the required list. When the allocated list is no longer needed, free it by
using XFree.

XListInstalledColormaps can generate a BadWindow error.

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Window and Session Manager Functions Setting and Retrieving the Font Search Path

10.4 Setting and Retrieving the Font Search Path

The set of fonts available from a server depends on a font search path. Xlib provides functions
to set and retrieve the search path for a server.

To set the font search path, use XSetFontPath.

XSetFontPath(display , directories , hdirs)
Display * display ;
char ** directories ;

int ndirs ;
display Specifies the connection to the X server.
directories Specifies the directory path used to look for a font. Setting the path to the

empty list restores the default path defined for the X server.
ndirs Specifies the number of directories in the path.

The XSetFontPath function defines the directory search path for font lookup. There is only one
search path per X server, not one per client. The encoding and interpretation of the strings is
implementation-dependent, but typically they specify directories or font servers to be searched
in the order listed. An X server is permitted to cache font information internally, for example, it
might cache an entire font from a file and not check on subsequent opens of that font to see if the
underlying font file has changed. However, when the font path is changed the X server is
guaranteed to flush all cached information about fonts for which there currently are no explicit
resource IDs allocated. The meaning of an error from this request is implementation-dependent.

XSetFontPath can generate a BadValue error.
To get the current font search path, use XGetFontPath.

char *XGetFontPath(display , npaths return)
Display * display ;
int * npaths _return

display Specifies the connection to the X server.
npaths_return Returns the number of strings in the font path array.

The XGetFontPath function allocates and returns an array of strings containing the search path.
The contents of these strings are implementation-dependent and are not intended to be
interpreted by client applications. When it is no longer needed, the data in the font path should
be freed by using XFreeFontPath.

To free data returned by XGetFontPath, use XFreeFontPath.

XFreeFontPath(list)
char ** |list ;

list Specifies the array of strings you want to free.

The XFreeFontPath function frees the data allocated by XGetFontPath.

Window Management (X11R5): Xlib - C Language Binding 195
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Server Grabbing Window and Session Manager Functions

10.5

196

Server Grabbing

Xlib provides functions that you can use to grab and ungrab the server. These functions can be
used to control processing of output on other connections by the window system server. While
the server is grabbed, no processing of requests or close downs on any other connection will
occur. A client closing its connection automatically ungrabs the server. Although grabbing the
server is highly discouraged, it is sometimes necessary.

To grab the server, use XGrabServer.

XGrabServer(display)
Display * display ;

display Specifies the connection to the X server.

The XGrabServer function disables processing of requests and close downs on all other
connections than the one this request arrived on. You should not grab the X server any more
than is absolutely necessary.

To ungrab the server, use XUngrabServer.

XUngrabServer(display)
Display * display ;

display Specifies the connection to the X server.

The XUngrabServer function restarts processing of requests and close downs on other
connections. You should avoid grabbing the X server as much as possible.

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Window and Session Manager Functions Killing Clients

10.6 Killing Clients
Xlib provides a function to cause the connection to a client to be closed and its resources to be
destroyed. To destroy a client, use XKillClient.
XKillClient(display , resource)
Display * display ;
XID resource ;
display Specifies the connection to the X server.
resource Specifies any resource associated with the client that you want to destroy or
AllTemporary.
The XKillClient function forces a close-down of the client that created the resource if a valid
resource is specified. If the client has already terminated in either RetainPermanent or
RetainTemporary mode, all of the client’s resources are destroyed. If AllTemporary is specified, the
resources of all clients that have terminated in RetainTemporary are destroyed (see Section 3.5).
This permits implementation of window manager facilities that aid debugging. A client can set
its close-down mode to RetainTemporary. If the client then crashes, its windows would not be
destroyed. The programmer can then inspect the application’s window tree and use the window
manager to destroy the zombie windows.
XKillClient can generate a BadValue error.
Window Management (X11R5): Xlib - C Language Binding 197

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Screen Saver Control Window and Session Manager Functions

10.7 Screen Saver Control

Xlib provides functions that you can use to set or reset the mode of the screen saver, to force or
activate the screen saver, or to obtain the current screen saver values.

To set the screen saver mode, use XSetScreenSaver.

XSetScreenSaver(display , timeout , interval
prefer_blanking , allow_exposures)
Display * display ;
int timeout , interval
int prefer_blanking ;
int allow_exposures

display Specifies the connection to the X server.
timeout Specifies the timeout, in seconds, until the screen saver turns on.
interval Specifies the interval, in seconds, between screen saver alterations.

prefer_blanking Specifies how to enable screen blanking. You can pass DontPreferBlanking,
PreferBlanking or DefaultBlanking.

allow_exposures Specifies the screen save control values. You can pass DontAllowExposures,
AllowExposures or DefaultExposures.

Timeout and interval are specified in seconds. A timeout of 0 disables the screen saver (but an
activated screen saver is not deactivated), and a timeout of —1 restores the default. Other
negative values generate a BadValue error. If the timeout value is nonzero, XSetScreenSaver
enables the screen saver. An interval of 0 disables the random-pattern motion. If no input from
devices (keyboard, mouse, and so on) is generated for the specified number of timeout seconds
once the screen saver is enabled, the screen saver is activated.

For each screen, if blanking is preferred and the hardware supports video blanking, the screen
simply goes blank. Otherwise, if either exposures are allowed or the screen can be regenerated
without sending Expose events to clients, the screen is tiled with the root window background
tile randomly re-origined each interval minutes. Otherwise, the screens’ state do not change,
and the screen saver is not activated. The screen saver is deactivated, and all screen states are
restored at the next keyboard or pointer input or at the next call to XForceScreenSaver with mode
ScreenSaverReset.

If the server-dependent screen saver method supports periodic change, the interval argument
serves as a hint about how long the change period should be, and zero hints that no periodic
change should be made. Examples of ways to change the screen include scrambling the
colormap periodically, moving an icon image around the screen periodically, or tiling the screen
with the root window background tile, randomly re-origined periodically.

XSetScreenSaver can generate a BadValue error.
To force the screen saver on or off, use XForceScreenSaver.

XForceScreenSaver(display , mode)
Display * display ;

int mode,
display Specifies the connection to the X server.
mode Specifies the mode that is to be applied. You can pass ScreenSaverActive or
ScreenSaverReset.
198 X/Open CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Window and Session Manager Functions Screen Saver Control

If the specified mode is ScreenSaverActive and the screen saver currently is deactivated,
XForceScreenSaver activates the screen saver even if the screen saver had been disabled with a
timeout of zero. If the specified mode is ScreenSaverReset and the screen saver currently is
enabled, XForceScreenSaver deactivates the screen saver if it was activated, and the activation
timer is reset to its initial state (as if device input had been received).

XForceScreenSaver can generate a BadValue error.
To activate the screen saver, use XActivateScreenSaver.

XActivateScreenSaver(display)
Display * display ;

display Specifies the connection to the X server.
To reset the screen saver, use XResetScreenSaver.

XResetScreenSaver(display)
Display * display ;

display Specifies the connection to the X server.

To get the current screen saver values, use XGetScreenSaver.

XGetScreenSaver(display , timeout return , interval _return ,
prefer_blanking _return , allow_exposures_return)
Display * display ;
int * timeout_return , * interval_return ;

int * prefer_blanking_return ;
int * allow_exposures_return ;

display Specifies the connection to the X server.
timeout_return Returns the timeout, in seconds, until the screen saver turns on.
interval_return Returns the interval between screen saver invocations.

prefer_blanking_return
Returns the current screen blanking preference (DontPreferBlanking,
PreferBlanking or DefaultBlanking).

allow_exposures_return
Returns the current screen save control value (DontAllowExposures,
AllowExposures or DefaultExposures).

Window Management (X11R5): Xlib - C Language Binding 199
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Controlling Host Access Window and Session Manager Functions

10.8

10.8.1

200

Controlling Host Access

This section discusses how to:
- add, get or remove hosts from the access control list
- change, enable or disable access.

X does not provide any protection on a per-window basis. If you find out the resource ID of a
resource, you can manipulate it. To provide some minimal level of protection, however,
connections are permitted only from machines you trust. This is adequate on single-user
workstations but obviously breaks down on timesharing machines. Although provisions exist in
the X protocol for proper connection authentication, the lack of a standard authentication server
leaves host-level access control as the only common mechanism.

The initial set of hosts allowed to open connections typically consists of;
« the host the window system is running on

« on POSIX-conformant systems, each host listed in the /etc/X?.hosts file. The ? indicates the
number of the display. This file should consist of host names separated by newlines.
DECnet nodes must terminate in :: to distinguish them from Internet hosts.

If a host is not in the access control list when the access control mechanism is enabled and if the
host attempts to establish a connection, the server refuses the connection. To change the access
list, the client must reside on the same host as the server and/or must have been granted
permission in the initial authorization at connection setup.

Servers also can implement other access control policies in addition to or in place of this host
access facility. For further information about other access control implementations, see the X
Window System Protocol specification.

Adding, Getting or Removing Hosts

Xlib provides functions that you can use to add, get, or remove hosts from the access control list.
All the host access control functions use the XHostAddress structure, which contains:

typedef struct {

int family; [* for example Familylnternet */

int length; [* length of address, in bytes */

char *address; /* pointer to where to find the address */
} XHostAddress;

The family member specifies which protocol address family to use (for example, TCP/IP or
DECnet) and can be Familylnternet, FamilyDECnet or FamilyChaos. The length member specifies
the length of the address in bytes. The address member specifies a pointer to the address.

For TCP/IP, the address should be in network byte order. For the DECnet family, the server
performs no automatic swapping on the address bytes. A Phase IV address is two bytes long.
The first byte contains the least-significant eight bits of the node number. The second byte
contains the most-significant two bits of the node number in the least-significant two bits of the
byte and the area in the most-significant six bits of the byte.

To add a single host, use XAddHost.

XAddHost(display , host)
Display * display ;
XHostAddress * host ;

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Window and Session Manager Functions Controlling Host Access

display Specifies the connection to the X server.
host Specifies the host that is to be added.

The XAddHost function adds the specified host to the access control list for that display. The
server must be on the same host as the client issuing the command, or a BadAccess error results.

XAddHost can generate BadAccess and BadValue errors.
To add multiple hosts at one time, use XAddHosts.

XAddHosts(display , hosts , num_hosts)
Display * display ;
XHostAddress * hosts ;
int num_hosts ;

display Specifies the connection to the X server.
hosts Specifies each host that is to be added.
num_hosts Specifies the number of hosts.

The XAddHosts function adds each specified host to the access control list for that display. The
server must be on the same host as the client issuing the command, or a BadAccess error results.

XAddHosts can generate BadAccess and BadValue errors.
To obtain a host list, use XListHosts.

XHostAddress *XListHosts(display , nhosts return , state _return)
Display * display ;
int * nhosts_return
Bool * state return ;

display Specifies the connection to the X server.
nhosts_return Returns the number of hosts currently in the access control list.
state_return Returns the state of the access control.

The XListHosts function returns the current access control list as well as whether the use of the
list at connection setup was enabled or disabled. XListHosts allows a program to find out what
machines can make connections. It also returns a pointer to a list of host structures that were
allocated by the function. When no longer needed, this memory should be freed by calling
XFree.

To remove a single host, use XRemoveHost.

XRemoveHost(display , host)
Display * display ;
XHostAddress * host ;

display Specifies the connection to the X server.
host Specifies the host that is to be removed.

The XRemoveHost function removes the specified host from the access control list for that
display. The server must be on the same host as the client process, or a BadAccess error results.
If you remove your machine from the access list, you can no longer connect to that server, and
this operation cannot be reversed unless you reset the server.

XRemoveHost can generate BadAccess and BadValue errors.

Window Management (X11R5): Xlib - C Language Binding 201
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Controlling Host Access Window and Session Manager Functions

10.8.2

202

To remove multiple hosts at one time, use XRemoveHosts.

XRemoveHosts(display , hosts , num_hosts)
Display * display ;
XHostAddress * hosts ;
int num_hosts ;

display Specifies the connection to the X server.
hosts Specifies each host that is to be removed.
num_hosts Specifies the number of hosts.

The XRemoveHosts function removes each specified host from the access control list for that
display. The X server must be on the same host as the client process, or a BadAccess error results.
If you remove your machine from the access list, you can no longer connect to that server, and
this operation cannot be reversed unless you reset the server.

XRemoveHosts can generate BadAccess and BadValue errors.

Changing, Enabling or Disabling Access Control
Xlib provides functions that you can use to enable, disable or change access control.

For these functions to execute successfully, the client application must reside on the same host as
the X server and/or have been given permission in the initial authorization at connection setup.

To change access control, use XSetAccessControl.

XSetAccessControl(display , mode)
Display * display ;

int mode,
display Specifies the connection to the X server.
mode Specifies the mode. You can pass EnableAccess or DisableAccess.

The XSetAccessControl function either enables or disables the use of the access control list at each
connection setup.

XSetAccessControl can generate BadAccess and BadValue errors.
To enable access control, use XEnableAccessControl.

XEnableAccessControl(display)
Display * display ;

display Specifies the connection to the X server.

The XEnableAccessControl function enables the use of the access control list at each connection
setup.

XEnableAccessControl can generate a BadAccess error.
To disable access control, use XDisableAccessControl.

XDisableAccessControl(display)
Display * display ;

display Specifies the connection to the X server.

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Window and Session Manager Functions Controlling Host Access

The XDisableAccessControl function disables the use of the access control list at each connection
setup.

XDisableAccessControl can generate a BadAccess error.

Window Management (X11R5): Xlib - C Language Binding 203
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Window and Session Manager Functions

204 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Chapter 11

Events

A client application communicates with the X server through the connection you establish with
the XOpenDisplay function. A client application sends requests to the X server over this
connection. These requests are made by the Xlib functions that are called in the client
application. Many Xlib functions cause the X server to generate events, and the user’s typing or
moving the pointer can generate events asynchronously. The X server returns events to the
client on the same connection.

This chapter discusses the following topics associated with events:
- event types
- event structures
+ event mask
- event processing.

Functions for handling events are dealt with in the next chapter.

Window Management (X11R5): Xlib - C Language Binding 205
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Event Types Events

111

206

Event Types

An event is data generated asynchronously by the X server as a result of some device activity or
as side effects of a request sent by an Xlib function. Device-related events propagate from the
source window to ancestor windows until some client application has selected that event type or
until the event is explicitly discarded. The X server generally sends an event to a client
application only if the client has specifically asked to be informed of that event type, typically by
setting the event-mask attribute of the window. The mask can also be set when you create a
window or by changing the window's event-mask. You can also mask out events that would
propagate to ancestor windows by manipulating the do-not-propagate mask of the window's
attributes. However, MappingNotify events are always sent to all clients.

An event type describes a specific event generated by the X server. For each event type, a
corresponding constant name is defined in <X11/X.h>, which is used when referring to an event
type. The following table lists the event category and its associated event type or types. The
processing associated with these events is discussed in Section 11.5.

Event Category Event Type
Keyboard events KeyPress, KeyRelease
Pointer events ButtonPress, ButtonRelease, MotionNotify
Window crossing events EnterNotify, LeaveNotify
Input focus events Focusln, FocusOut
Keymap state notification event KeymapNotify
Exposure events Expose, GraphicsExpose, NoExpose
Structure control events CirculateRequest, ConfigureRequest, MapRequest,

ResizeRequest

Window state notification events | CirculateNotify, ConfigureNotify, CreateNotify,
DestroyNotify, GravityNotify, MapNotify,
MappingNotify, ReparentNotify, UnmapNotify,

VisibilityNotify
Colormap state notification event | ColormapNotify
Client communication events ClientMessage, PropertyNotify, SelectionClear,

SelectionNotify, SelectionRequest

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Events Event Structures

11.2 Event Structures

For each event type, a corresponding structure is declared in <X11/Xlib.h>. All the event
structures have the following common members:

typedef struct {

int type;

unsigned long serial; /* # of last request processed by
server */

Bool send_event; [* true if this came from a SendEvent
request */

Display *display; [* Display the event was read from */

Window window;
} XAnyEvent;

The type member is set to the event type constant name that uniquely identifies it. For example,
when the X server reports a GraphicsExpose event to a client application, it sends an
XGraphicsExposeEvent structure with the type member set to GraphicsExpose. The display
member is set to a pointer to the display the event was read on. The send_event member is set
to True if the event came from a SendEvent protocol request. The serial member is set from the
serial number reported in the protocol but expanded from the 16-bit least-significant bits to a full
32-bit value. The window member is set to the window that is most useful to toolkit
dispatchers.

The X server can send events at any time in the input stream. Xlib stores any events received
while waiting for a reply in an event queue for later use. Xlib also provides functions that allow
you to check events in the event queue (see Section 12.3).

In addition to the individual structures declared for each event type, the XEvent structure is a
union of the individual structures declared for each event type. Depending on the type, you
should access members of each event by using the XEvent union.

Window Management (X11R5): Xlib - C Language Binding 207
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Event Structures

typedef union _XEvent {

int type; /* must not be changed */
XAnyEvent xany;

XKeyEvent xkey;

XButtonEvent xbutton;

XMotionEvent xmotion;

XCrossingEvent xcrossing;
XFocusChangeEvent xfocus;
XExposeEvent xexpose;
XGraphicsExposeEvent xgraphicsexpose;
XNoExposeEvent xnoexpose;
XVisibilityEvent xvisibility;
XCreateWindowEvent xcreatewindow;
XDestroyWindowEvent xdestroywindow;
XUnmapEvent xunmap;

XMapEvent xmap;

XMapRequestEvent xmaprequest,
XReparentEvent xreparent;
XConfigureEvent xconfigure;
XGravityEvent xgravity;
XResizeRequestEvent xresizerequest;
XConfigureRequestEvent xconfigurerequest;
XCirculateEvent xcirculate;
XCirculateRequestEvent xcirculaterequest;
XPropertyEvent xproperty;
XSelectionClearEvent xselectionclear;
XSelectionRequestEvent xselectionrequest;
XSelectionEvent xselection;
XColormapEvent xcolormap;
XClientMessageEvent xclient;
XMappingEvent xmapping;

XErrorEvent xerror,

XKeymapEvent xkeymap;

long pad[24];

} XEvent;

Events

An XEvent structure’s first entry always is the type member, which is set to the event type. The
second member always is the serial number of the protocol request that generated the event.
The third member always is send_event, which is a Bool that indicates if the event was sent by a
different client. The fourth member always is a display, which is the display that the event was
read from. Except for keymap events, the fifth member always is a window, which has been
carefully selected to be useful to toolkit dispatchers. To avoid breaking toolkits, the order of
these first five entries is not to change. Most events also contain a time member, which is the
time at which an event occurred. In addition, a pointer to the generic event must be cast before
it is used to access any other information in the structure.

208

0 1995, X/Open Company Limited.

X/0pen CAE Specification
Stamp: X XXX XXXXXX XX XXX X XXX XXXXX

Events Event Masks
11.3 Event Masks
Clients select event reporting of most events relative to a window. To do this, pass an event
mask to an Xlib event-handling function that takes an event_mask argument. The bits of the
event mask are defined in <X11/X.h>. Each bit in the event mask maps to an event mask name,
which describes the event or events you want the X server to return to a client application.
Unless the client has specifically asked for them, most events are not reported to clients when
they are generated. Unless the client suppresses them by setting graphics-exposures in the GC
to False, GraphicsExpose and NoExpose are reported by default as a result of XCopyPlane and
XCopyArea. SelectionClear, SelectionRequest, SelectionNotify or ClientMessage cannot be masked.
Selection related events are only sent to clients cooperating with selections (see Section 5.5).
When the keyboard or pointer mapping is changed, MappingNotify is always sent to clients.
The following table lists the event mask constants you can pass to the event_mask argument and
the circumstances in which you would want to specify the event mask:
Event Mask Circumstances
NoEventMask No events wanted
KeyPressMask Keyboard down events wanted
KeyReleaseMask Keyboard up events wanted
ButtonPressMask Pointer button down events wanted
ButtonReleaseMask Pointer button up events wanted
EnterWindowMask Pointer window entry events wanted
LeaveWindowMask Pointer window leave events wanted
PointerMotionMask Pointer motion events wanted
PointerMotionHintMask Pointer motion hints wanted
Button1MotionMask Pointer motion while button 1 down
Button2MotionMask Pointer motion while button 2 down
Button3MotionMask Pointer motion while button 3 down
Button4MotionMask Pointer motion while button 4 down
Button5MotionMask Pointer motion while button 5 down
ButtonMotionMask Pointer motion while any button down
KeymapStateMask Keyboard state wanted at window entry and
focus in
ExposureMask Any exposure wanted
VisibilityChangeMask Any change in visibility wanted
StructureNotifyMask Any change in window structure wanted
ResizeRedirectMask Redirect resize of this window
SubstructureNotifyMask Substructure notification wanted
SubstructureRedirectMask | Redirect structure requests on children
FocusChangeMask Any change in input focus wanted
PropertyChangeMask Any change in property wanted
ColormapChangeMask Any change in colormap wanted
OwnerGrabButtonMask Automatic grabs should activate with
owner_events set to True
Window Management (X11R5): Xlib - C Language Binding 209

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Event Processing Overview

114

210

Events

Event Processing Overview

The event reported to a client application during event processing depends on which event
masks you provide as the event-mask attribute for a window. For some event masks, there is a
one-to-one correspondence between the event mask constant and the event type constant. For
example, if you pass the event mask ButtonPressMask, the X server sends back only ButtonPress
events. Most events contain a time member, which is the time at which an event occurred.

In other cases, one event mask constant can map to several event type constants. For example, if
you pass the event mask SubstructureNotifyMask, the X server can send back CirculateNotify,
ConfigureNotify, CreateNotify, DestroyNotify, GravityNotify, MapNotify, ReparentNotify or
UnmapNotify events.

In another case, two event masks can map to one event type. For example, if you pass either
PointerMotionMask or ButtonMotionMask, the X server sends back a MotionNotify event.

The following table lists the event mask, its associated event type or types, and the structure
name associated with the event type. Some of these structures actually are typedefs to a generic
structure that is shared between two event types. Note that N/A appears in columns for which
the information is not applicable.

Generic Structure
XMotionEvent

Structure
XPointerMovedEvent

Event Mask

ButtonMotionMask

Button1MotionMask
Button2MotionMask
Button3MotionMask
Button4MotionMask
Button5MotionMask

Event Type
MotionNotify

ButtonPressMask ButtonPress XButtonPressedEvent XButtonEvent

ButtonReleaseMask

ColormapChangeMask

EnterWindowMask EnterNotify XEnterWindowEvent XCrossingEvent
LeaveWindowMask LeaveNotify XLeaveWindowEvent XCrossingEvent
ExposureMask Expose XExposeEvent
GCGraphicsExposures in GC | GraphicsExpose | XGraphicsExposeEvent
NoExpose XNoExposeEvent
FocusChangeMask Focusin XFocusInEvent XFocusChangeEvent
FocusOut XFocusOutEvent XFocusChangeEvent
KeymapStateMask KeymapNotify XKeymapEvent
KeyPressMask KeyPress XKeyPressedEvent XKeyEvent
KeyReleaseMask KeyRelease XKeyReleasedEvent XKeyEvent
OwnerGrabButtonMask N/A N/A
PointerMotionMask MotionNotify XPointerMovedEvent XMotionEvent

ButtonRelease

ColormapNotify

XButtonReleasedEvent

XColormapEvent

XButtonEvent

0 1995, X/Open Company Limited.

X/0pen CAE Specification

Stamp: XXXXXXXXX XX XXX XXXXXX XXX

Events

Event Processing Overview

Event Mask Event Type Structure Generic Structure
PointerMotionHintMask N/A N/A
PropertyChangeMask PropertyNotify XPropertyEvent

ResizeRedirectMask

StructureNotifyMask

SubstructureNotifyMask

SubstructureRedirectMask

N/A
N/A
N/A
N/A

N/A

VisibilityChangeMask

ResizeRequest

CirculateNotify
ConfigureNotify
DestroyNotify
GravityNotify
MapNotify
ReparentNotify
UnmapNotify

CirculateNotify
ConfigureNotify
CreateNotify
DestroyNotify
GravityNotify
MapNotify
ReparentNotify
UnmapNotify

CirculateRequest
ConfigureRequest
MapRequest
ClientMessage
MappingNotify
SelectionClear
SelectionNotify

SelectionRequest

VisibilityNotify

XResizeRequestEvent

XCirculateEvent
XConfigureEvent
XDestroyWindowEvent
XGravityEvent
XMapEvent
XReparentEvent
XUnmapEvent

XCirculateEvent
XConfigureEvent
XCreateWindowEvent
XDestroyWindowEvent
XGravityEvent
XMapEvent
XReparentEvent
XUnmapEvent

XCirculateRequestEvent
XConfigureRequestEvent
XMapRequestEvent
XClientMessageEvent
XMappingEvent
XSelectionClearEvent
XSelectionEvent

XSelectionRequestEvent

XVisibilityEvent

The sections that follow describe the processing that occurs when you select the different event
masks. The sections are organized according to these processing categories:

keyboard and pointer events

window crossing events

input focus events

keymap state notification events

exposure events

window state notification events

structure control events

colormap state notification events

client communication events.

Window Management (X11R5): Xlib - C Language Binding
0 1995, X/Open Company Limited.

211

Stamp:XXXXXXXXX XX XXX XXXXXX XXX

Keyboard and Pointer Events Events

115

1151

11.5.2

212

Keyboard and Pointer Events
This section discusses:
« pointer button events

- keyboard and pointer events.

Pointer Button Events

The following describes the event processing that occurs when a pointer button press is
processed with the pointer in some window w and when no active pointer grab is in progress.

The X server searches the ancestors of w from the root down, looking for a passive grab to
activate. If no matching passive grab on the button exists, the X server automatically starts an
active grab for the client receiving the event and sets the last-pointer-grab time to the current
server time. The effect is essentially equivalent to an XGrabButton with these client passed
arguments:

Argument Value
w The event window
event_mask The client’s selected pointer events on the event
window

pointer_mode GrabModeAsync
keyboard_mode | GrabModeAsync
owner_events True, if the client has selected
OwnerGrabButtonMask on the event window,
otherwise False

confine_to None
cursor None

The active grab is automatically terminated when the logical state of the pointer has all buttons
released. Clients can modify the active grab by calling XUngrabPointer and
XChangeActivePointerGrab.

Keyboard and Pointer Events

This section discusses the processing that occurs for the keyboard events KeyPress and KeyRelease
and the pointer events ButtonPress, ButtonRelease and MotionNotify. For information about the
keyboard event-handling utilities, see Chapter 12.

The X server reports KeyPress or KeyRelease events to clients wanting information about keys that
logically change state. Note that these events are generated for all keys, even those mapped to
modifier bits. The X server reports ButtonPress or ButtonRelease events to clients wanting
information about buttons that logically change state.

The X server reports MotionNotify events to clients wanting information about when the pointer
logically moves. The X server generates this event whenever the pointer is moved and the
pointer motion begins and ends in the window. The granularity of MotionNotify events is not
guaranteed, but a client that selects this event type is guaranteed to receive at least one event
when the pointer moves and then rests.

The generation of the logical changes lags the physical changes if device event processing is
frozen.

To receive KeyPress, KeyRelease, ButtonPress and ButtonRelease events, set KeyPressMask,
KeyReleaseMask, ButtonPressMask and ButtonReleaseMask bits in the event-mask attribute of the

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Events Keyboard and Pointer Events

window.

To receive MotionNotify events, set one or more of the following event masks bits in the event-
mask attribute of the window.

« Button1MotionMask — Button5MotionMask

The client application receives MotionNotify events only when one or more of the specified
buttons is pressed.

« ButtonMotionMask
The client application receives MotionNotify events only when at least one button is pressed.
» PointerMotionMask

The client application receives MotionNotify events independent of the state of the pointer
buttons.

« PointerMotionHintMask

If PointerMotionHintMask is selected in combination with one or more of the above masks, the
X server is free to send only one MotionNotify event (with the is_hint member of the
XPointerMovedEvent structure set to NotifyHint) to the client for the event window, until
either the key or button state changes, the pointer leaves the event window, or the client calls
XQueryPointer or XGetMotionEvents. The server still may send MotionNotify events without
is_hint set to NotifyHint.

The source of the event is the viewable window that the pointer is in. The window used by the
X server to report these events depends on the window’s position in the window hierarchy and
whether any intervening window prohibits the generation of these events. Starting with the
source window, the X server searches up the window hierarchy until it locates the first window
specified by a client as having an interest in these events. If one of the intervening windows has
its do-not-propagate-mask set to prohibit generation of the event type, the events of those types
will be suppressed. Clients can modify the actual window used for reporting by performing
active grabs and, in the case of keyboard events, by using the focus window.

The structures for these event types contain:

Window Management (X11R5): Xlib - C Language Binding 213
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Keyboard and Pointer Events Events

typedef struct {

int type; [* ButtonPress or ButtonRelease */

unsigned long serial; /* # of last request processed by
server */

Bool send_event; [* true if this came from a SendEvent
request */

Display *display; [* Display the event was read from */

Window window; /* “event” window it is reported
relative to */

Window root; /* root window that the event occurred
on */

Window subwindow; /* child window */

Time time; /* milliseconds */

int x, vy; /* pointer x, y coordinates in event
window */

int x_root, y root; /* coordinates relative to root */
unsigned int state; [* key or button mask */
unsigned int button; /* detail */
Bool same_screen; [* same screen flag */

} XButtonEvent;

typedef XButtonEvent XButtonPressedEvent;

typedef XButtonEvent XButtonReleasedEvent;

typedef struct {

int type; /* KeyPress or KeyRelease */

unsigned long serial; /* # of last request processed by
server */

Bool send_event; [* true if this came from a SendEvent
request */

Display *display; [* Display the event was read from */

Window window; /* “event” window it is reported
relative to */

Window root; /* root window that the event occurred
on */

Window subwindow; /* child window */

Time time; /* milliseconds */

int x, vy; /* pointer x, y coordinates in event
window */

int x_root, y root; /* coordinates relative to root */
unsigned int state; [* key or button mask */
unsigned int keycode; /* detail */
Bool same_screen; [* same screen flag */

} XKeyEvent;

typedef XKeyEvent XKeyPressedEvent;

typedef XKeyEvent XKeyReleasedEvent;

214 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.0.

Events Keyboard and Pointer Events

typedef struct {

int type; /* MotionNotify */

unsigned long serial; /* # of last request processed by
server */

Bool send_event; [* true if this came from a SendEvent
request */

Display *display; [* Display the event was read from */

Window window; /* “event” window reported
relative to */

Window root; /* root window that the event occurred
on */

Window subwindow; /* child window */

Time time; /* milliseconds */

int x, vy; /* pointer x, y coordinates in event
window */

int x_root, y root; /* coordinates relative to root */
unsigned int state; [* key or button mask */
char is_hint; [* detail */
Bool same_screen; [* same screen flag */
} XMotionEvent;
typedef XMotionEvent XPointerMovedEvent;

These structures have the following common members: window, root, subwindow, time, X, y,
X_root, y_root, state and same_screen. The window member is set to the window on which the
event was generated and is referred to as the event window. As long as the conditions
previously discussed are met, this is the window used by the X server to report the event. The
root member is set to the source window’s root window. The x_root and y_root members are set
to the pointer’s coordinates relative to the root window’s origin at the time of the event.

The same_screen member is set to indicate whether the event window is on the same screen as
the root window and can be either True or False. If True, the event and root windows are on the
same screen. If False, the event and root windows are not on the same screen.

If the source window is an inferior of the event window, the subwindow member of the
structure is set to the child of the event window that is the source window or the child of the
event window that is an ancestor of the source window. Otherwise, the X server sets the
subwindow member to None. The time member is set to the time when the event was generated
and is expressed in milliseconds.

If the event window is on the same screen as the root window, the x and y members are set to
the coordinates relative to the event window’s origin. Otherwise, these members are set to zero.

The state member is set to indicate the logical state of the pointer buttons and modifier keys just
prior to the event, which is the bitwise inclusive OR of one or more of the button or modifier key
masks: ButtonlMask, Button2Mask, Button3Mask, Button4Mask, Button5Mask, ShiftMask,
LockMask, ControlMask, Mod1Mask, Mod2Mask, Mod3Mask, Mod4Mask and Mod5Mask.

Each of these structures also has a member that indicates the detail. For the XKeyPressedEvent
and XKeyReleasedEvent structures, this member is called keycode. It is set to a number that
represents a physical key on the keyboard. The keycode is an arbitrary representation for any
key on the keyboard (see Section 13.7 and Section 17.1).

For the XButtonPressedEvent and XButtonReleasedEvent structures, this member is called button.
It represents the pointer button that changed state and can be the Buttonl, Button2, Button3,
Button4 or Button5 value. For the XPointerMovedEvent structure, this member is called is_hint. It
can be set to NotifyNormal or NotifyHint.

Window Management (X11R5): Xlib - C Language Binding 215
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Window Entry/Exit Events Events

11.6

216

Window Entry/Exit Events

This section describes the processing that occurs for the window crossing events EnterNotify and
LeaveNotify. If a pointer motion or a window hierarchy change causes the pointer to be in a
different window than before, the X server reports EnterNotify or LeaveNotify events to clients
who have selected for these events. All EnterNotify and LeaveNotify events caused by a hierarchy
change are generated after any hierarchy event (UnmapNotify, MapNotify, ConfigureNotify,
GravityNotify, CirculateNotify) caused by that change; however, the X protocol does not constrain
the ordering of EnterNotify and LeaveNotify events with respect to FocusOut, VisibilityNotify and
Expose events.

This contrasts with MotionNotify events, which are also generated when the pointer moves but
only when the pointer motion begins and ends in a single window. An EnterNotify or LeaveNotify
event also can be generated when some client application calls XGrabPointer and
XUngrabPointer.

To receive EnterNotify or LeaveNotify events, set the EnterWindowMask or LeaveWindowMask bits
of the event-mask attribute of the window.

The structure for these event types contains:

typedef struct {

int type; /* EnterNotify or LeaveNotify */
unsigned long serial; /* # of last request processed by
server */
Bool send_event; [* true if this came from a SendEvent
request */
Display *display; [* Display the event was read from */
Window window; /* “event” window reported
relative to */
Window root; /* root window that the event occurred
on */
Window subwindow; /* child window */
Time time; /* milliseconds */
int x, vy; /* pointer x, y coordinates in event
window */
int x_root, y root; /* coordinates relative to root */
int mode; /* NotifyNormal, NotifyGrab, NotifyUngrab */
int detail;
/*
* NotifyAncestor, NotifyVirtual,
* Notifylnferior, NotifyNonlinear,
* NotifyNonlinearVirtual
*
Bool same_screen; [* same screen flag */
Bool focus; /* boolean focus */

unsigned int state; [* key or button mask */
} XCrossingEvent;
typedef XCrossingEvent XEnterWindowEvent;
typedef XCrossingEvent XLeaveWindowEvent;

The window member is set to the window on which the EnterNotify or LeaveNotify event was
generated and is referred to as the event window. This is the window used by the X server to
report the event, and is relative to the root window on which the event occurred. The root
member is set to the root window of the screen on which the event occurred.

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.0.

Events Window Entry/Exit Events

For a LeaveNotify event, if a child of the event window contains the initial position of the pointer,
the subwindow component is set to that child. Otherwise, the X server sets the subwindow
member to None. For an EnterNotify event, if a child of the event window contains the final
pointer position, the subwindow component is set to that child or None.

The time member is set to the time when the event was generated and is expressed in
milliseconds. The x and y members are set to the coordinates of the pointer position in the event
window. This position is always the pointer’s final position, not its initial position. If the event
window is on the same screen as the root window, x and y are the pointer coordinates relative to
the event window’s origin. Otherwise, x and y are set to zero. The Xx_root and y_root members
are set to the pointer’s coordinates relative to the root window’s origin at the time of the event.

The same_screen member is set to indicate whether the event window is on the same screen as
the root window and can be either True or False. If True, the event and root windows are on the
same screen. If False, the event and root windows are not on the same screen.

The focus member is set to indicate whether the event window is the focus window or an
inferior of the focus window. The X server can set this member to either True or False. If True,
the event window is the focus window or an inferior of the focus window. If False, the event
window is not the focus window or an inferior of the focus window.

The state member is set to indicate the state of the pointer buttons and modifier keys just prior to
the event. The X server can set this member to the bitwise inclusive OR of one or more of the
button or modifier key masks: ButtonlMask, Button2Mask, Button3Mask, Button4Mask,
Button5Mask, ShiftMask, LockMask, ControlMask, Mod1Mask, Mod2Mask, Mod3Mask, Mod4Mask,
Mod5Mask.

The mode member is set to indicate whether the events are normal events, pseudo-motion
events when a grab activates, or pseudo-motion events when a grab deactivates. The X server
can set this member to NotifyNormal, NotifyGrab or NotifyUngrab.

The detail member is set to indicate the notify detail and can be NotifyAncestor, NotifyVirtual,
Notifylnferior, NotifyNonlinear or NotifyNonlinearVirtual .

11.6.1 Normal Entry/Exit Events

EnterNotify and LeaveNotify events are generated when the pointer moves from one window to
another window. Normal events are identified by XEnterWindowEvent or XLeaveWindowEvent
structures whose mode member is set to NotifyNormal.

« When the pointer moves from window A to window B and A is an inferior of B, the X server
does the following:

— It generates a LeaveNotify event on window A, with the detail member of the
XLeaveWindowEvent structure set to NotifyAncestor.

— It generates a LeaveNotify event on each window between window A and window B,
exclusive, with the detail member of each XLeaveWindowEvent structure set to
NotifyVirtual.

— It generates an EnterNotify event on window B, with the detail member of the
XEnterWindowEvent structure set to Notifylnferior.

« When the pointer moves from window A to window B and B is an inferior of A, the X server
does the following:

— It generates a LeaveNotify event on window A, with the detail member of the
XLeaveWindowEvent structure set to Notifylnferior.

Window Management (X11R5): Xlib - C Language Binding 217
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Window Entry/Exit Events Events

It generates an EnterNotify event on each window between window A and window B,
exclusive, with the detail member of each XEnterWindowEvent structure set to
NotifyVirtual.

It generates an EnterNotify event on window B, with the detail member of the
XEnterWindowEvent structure set to NotifyAncestor.

« When the pointer moves from window A to window B and window C is their least common
ancestor, the X server does the following:

It generates a LeaveNotify event on window A, with the detail member of the
XLeaveWindowEvent structure set to NotifyNonlinear.

It generates a LeaveNotify event on each window between window A and window C,
exclusive, with the detail member of each XLeaveWindowEvent structure set to
NotifyNonlinearVirtual .

It generates an EnterNotify event on each window between window C and window B,
exclusive, with the detail member of each XEnterWindowEvent structure set to
NotifyNonlinearVirtual .

It generates an EnterNotify event on window B, with the detail member of the
XEnterWindowEvent structure set to NotifyNonlinear .

« When the pointer moves from window A to window B on different screens, the X server does
the following:

It generates a LeaveNotify event on window A, with the detail member of the
XLeaveWindowEvent structure set to NotifyNonlinear.

If window A is not a root window, it generates a LeaveNotify event on each window above
window A up to and including its root, with the detail member of each
XLeaveWindowEvent structure set to NotifyNonlinearVirtual .

If window B is not a root window, it generates an EnterNotify event on each window from
window B’s root down to but not including window B, with the detail member of each
XEnterWindowEvent structure set to NotifyNonlinearVirtual.

It generates an EnterNotify event on window B, with the detail member of the
XEnterWindowEvent structure set to NotifyNonlinear .

11.6.2 Grab and Ungrab Entry/Exit Events

Pseudo-motion mode EnterNotify and LeaveNotify events are generated when a pointer grab
activates or deactivates. Events in which the pointer grab activates are identified by
XEnterwWindowEvent or XLeaveWindowEvent structures whose mode member is set to NotifyGrab.
Events in which the pointer grab deactivates are identified by XEnterWindowEvent or
XLeaveWindowEvent structures whose mode member is set to NotifyUngrab (see XGrabPointer).

« When a pointer grab activates after any initial warp into a confine_to window and before
generating any actual ButtonPress event that activates the grab, G is the grab_window for the
grab, and P is the window the pointer is in, the X server does the following:

218

It generates EnterNotify and LeaveNotify events (see Section 11.6.1) with the mode
members of the XEnterWindowEvent and XLeaveWindowEvent structures set to NotifyGrab.
These events are generated as if the pointer were to suddenly warp from its current
position in P to some position in G. However, the pointer does not warp, and the X server
uses the pointer position as both the initial and final positions for the events.

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Events Window Entry/Exit Events

- When a pointer grab deactivates after generating any actual ButtonRelease event that
deactivates the grab, G is the grab_window for the grab, and P is the window the pointer is
in, the X server does the following:

— It generates EnterNotify and LeaveNotify events (see Section 11.6.1) with the mode
members of the XEnterWindowEvent and XLeaveWindowEvent structures set to
NotifyUngrab. These events are generated as if the pointer were to suddenly warp from
some position in G to its current position in P. However, the pointer does not warp, and
the X server uses the current pointer position as both the initial and final positions for the
events.

Window Management (X11R5): Xlib - C Language Binding 219
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Input Focus Events Events

11.7

220

Input Focus Events

This section describes the processing that occurs for the input focus events Focusin and
FocusOut. The X server can report Focusin or FocusOut events to clients wanting information
about when the input focus changes. The keyboard is always attached to some window
(typically, the root window or a top-level window), which is called the focus window. The focus
window and the position of the pointer determine the window that receives keyboard input.
Clients may need to know when the input focus changes to control highlighting of areas on the
screen.

To receive Focusln or FocusOut events, set the FocusChangeMask bit in the event-mask attribute of
the window.

The structure for these event types contains:

typedef struct {

int type; /* Focusin or FocusOut */

unsigned long serial; /* # of last request processed by
server */

Bool send_event; [* true if this came from a SendEvent
request */

Display *display; [* Display the event was read from */

Window window; /* window of event */

int mode; /* NotifyNormal, NotifyGrab,

NotifyUngrab */
int detail;

/*
* NotifyAncestor, NotifyVirtual,
* Notifylnferior, NotifyNonlinear,
* NotifyNonlinearVirtual, NotifyPointer,
* NotifyPointerRoot, NotifyDetailNone
*

} XFocusChangeEvent;

typedef XFocusChangeEvent XFocuslnEvent;

typedef XFocusChangeEvent XFocusOutEvent;

The window member is set to the window on which the Focusin or FocusOut event was
generated. This is the window used by the X server to report the event. The mode member is set
to indicate whether the focus events are normal focus events, focus events while grabbed, focus
events when a grab activates, or focus events when a grab deactivates. The X server can set the
mode member to NotifyNormal, NotifyWhileGrabbed, NotifyGrab or NotifyUngrab.

All FocusOut events caused by a window unmap are generated after any UnmapNotify event;
however, the X protocol does not constrain the ordering of FocusOut events with respect to
generated EnterNotify, LeaveNotify, VisibilityNotify and Expose events.

Depending on the event mode, the detail member is set to indicate the notify detail and can be
NotifyAncestor, NotifyVirtual, NotifyInferior, NotifyNonlinear, NotifyNonlinearVirtual
NotifyPointer, NotifyPointerRoot or NotifyDetailNone.

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Events

Input Focus Events

11.7.1 Normal Focus Events and Focus Events While Grabbed

Normal focus events are identified by XFocusInEvent or XFocusOutEvent structures whose mode
member is set to NotifyNormal. Focus events while grabbed are identified by XFocusinEvent or
XFocusOutEvent structures whose mode member is set to NotifyWhileGrabbed. The X server
processes normal focus and focus events while grabbed according to the following:

« When the focus moves from window A to window B, A is an inferior of B, and the pointer is
in window P, the X server does the following:

It generates a FocusOut event on window A, with the detail member of the
XFocusOutEvent structure set to NotifyAncestor.

It generates a FocusOut event on each window between window A and window B,
exclusive, with the detail member of each XFocusOutEvent structure set to NotifyVirtual .

It generates a Focusln event on window B, with the detail member of the XFocusOutEvent
structure set to NotifylInferior.

If window P is an inferior of window B but window P is not window A or an inferior or
ancestor of window A, it generates a Focusln event on each window below window B,
down to and including window P, with the detail member of each XFocusinEvent
structure set to NotifyPointer.

« When the focus moves from window A to window B, B is an inferior of A, and the pointer is
in window P, the X server does the following:

If window P is an inferior of window A but P is not an inferior of window B or an
ancestor of B, it generates a FocusOut event on each window from window P up to but not
including window A, with the detail member of each XFocusOutEvent structure set to
NotifyPointer.

It generates a FocusOut event on window A, with the detail member of the
XFocusOutEvent structure set to NotifylInferior.

It generates a Focusin event on each window between window A and window B,
exclusive, with the detail member of each XFocusInEvent structure set to NotifyVirtual .

It generates a Focusin event on window B, with the detail member of the XFocusinEvent
structure set to NotifyAncestor.

- When the focus moves from window A to window B, window C is their least common
ancestor, and the pointer is in window P, the X server does the following:

If window P is an inferior of window A, it generates a FocusOut event on each window
from window P up to but not including window A, with the detail member of the
XFocusOutEvent structure set to NotifyPointer.

It generates a FocusOut event on window A, with the detail member of the
XFocusOutEvent structure set to NotifyNonlinear .

It generates a FocusOut event on each window between window A and window C,
exclusive, with the detail member of each XFocusOutEvent structure set to
NotifyNonlinearVirtual .

It generates a Focusln event on each window between C and B, exclusive, with the detail
member of each XFocusInEvent structure set to NotifyNonlinearVirtual.

It generates a Focusin event on window B, with the detail member of the XFocusinEvent
structure set to NotifyNonlinear.

Window Management (X11R5): Xlib - C Language Binding 221
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Input Focus Events Events

— If window P is an inferior of window B, it generates a Focusln event on each window
below window B down to and including window P, with the detail member of the
XFocusInEvent structure set to NotifyPointer.

« When the focus moves from window A to window B on different screens and the pointer is in
window P, the X server does the following:

— If window P is an inferior of window A, it generates a FocusOut event on each window
from window P up to but not including window A, with the detail member of each
XFocusOutEvent structure set to NotifyPointer.

— It generates a FocusOut event on window A, with the detail member of the
XFocusOutEvent structure set to NotifyNonlinear .

— If window A is not a root window, it generates a FocusOut event on each window above
window A up to and including its root, with the detail member of each XFocusOutEvent
structure set to NotifyNonlinearVirtual.

— If window B is not a root window, it generates a Focusin event on each window from
window B’s root down to but not including window B, with the detail member of each
XFocusInEvent structure set to NotifyNonlinearVirtual.

— It generates a FocusIn event on window B, with the detail member of each XFocusIinEvent
structure set to NotifyNonlinear.

— If window P is an inferior of window B, it generates a Focusln event on each window
below window B down to and including window P, with the detail member of each
XFocusInEvent structure set to NotifyPointer.

« When the focus moves from window A to PointerRoot (events sent to the window under the
pointer) or None (discard), and the pointer is in window P, the X server does the following:

— If window P is an inferior of window A, it generates a FocusOut event on each window
from window P up to but not including window A, with the detail member of each
XFocusOutEvent structure set to NotifyPointer.

— It generates a FocusOut event on window A, with the detail member of the
XFocusOutEvent structure set to NotifyNonlinear .

— If window A is not a root window, it generates a FocusOut event on each window above
window A up to and including its root, with the detail member of each XFocusOutEvent
structure set to NotifyNonlinearVirtual.

— It generates a FocusIn event on the root window of all screens, with the detail member of
each XFocuslnEvent structure set to NotifyPointerRoot (or NotifyDetailNone).

— If the new focus is PointerRoot, it generates a Focusln event on each window from window
P’s root down to and including window P, with the detail member of each XFocusInEvent
structure set to NotifyPointer.

« When the focus moves from PointerRoot (events sent to the window under the pointer) or
None to window A, and the pointer is in window P, the X server does the following:

— If the old focus is PointerRoot, it generates a FocusOut event on each window from
window P up to and including window P’s root, with the detail member of each
XFocusOutEvent structure set to NotifyPointer.

— It generates a FocusOut event on all root windows, with the detail member of each
XFocusOutEvent structure set to NotifyPointerRoot (or NotifyDetailNone).

222 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Events

Input Focus Events

If window A is not a root window, it generates a Focusin event on each window from

window A’s root down to but not including window A, with the detail member of each

XFocusInEvent structure set to NotifyNonlinearVirtual.

It generates a Focusin event on window A, with the detail member of the XFocusinEvent
structure set to NotifyNonlinear.

If window P is an inferior of window A, it generates a Focusln event on each window
below window A down to and including window P, with the detail member of each
XFocusInEvent structure set to NotifyPointer.

« When the focus moves from PointerRoot (events sent to the window under the pointer) to
None (or vice versa), and the pointer is in window P, the X server does the following:

If the old focus is PointerRoot, it generates a FocusOut event on each window from
window P up to and including window P’s root, with the detail member of each
XFocusOutEvent structure set to NotifyPointer.

It generates a FocusOut event on all root windows, with the detail member of each
XFocusOutEvent structure set to either NotifyPointerRoot or NotifyDetailNone.

It generates a Focusin event on all root windows, with the detail member of each
XFocusInEvent structure set to NotifyDetailNone or NotifyPointerRoot .

If the new focus is PointerRoot, it generates a Focusln event on each window from window
P’s root down to and including window P, with the detail member of each XFocusInEvent
structure set to NotifyPointer.

11.7.2 Focus Events Generated by Grabs

Focus

events in which the keyboard grab activates are identified by XFocusinEvent or

XFocusOutEvent structures whose mode member is set to NotifyGrab. Focus events in which the
keyboard grab deactivates are identified by XFocusInEvent or XFocusOutEvent structures whose
mode member is set to NotifyUngrab (see XGrabKeyboard).

- When a keyboard grab activates before generating any actual KeyPress event that activates
the grab, G is the grab_window, and F is the current focus, the X server does the following:

It generates Focusin and FocusOut events, with the mode members of the XFocusinEvent
and XFocusOutEvent structures set to NotifyGrab. These events are generated as if the
focus were to change from F to G.

- When a keyboard grab deactivates after generating any actual KeyRelease event that
deactivates the grab, G is the grab_window, and F is the current focus, the X server does the
following:

— It generates Focusln and FocusOut events, with the mode members of the XFocusinEvent

and XFocusOutEvent structures set to NotifyUngrab. These events are generated as if the
focus were to change from G to F.

Window Management (X11R5): Xlib - C Language Binding 223
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Key Map State Notification Events Events

11.8

224

Key Map State Notification Events

The X server can report KeymapNotify events to clients that want information about changes in
their keyboard state.

To receive KeymapNotify events, set the KeymapStateMask bit in the event-mask attribute of the
window. The X server generates this event immediately after every EnterNotify and Focuslin
event.

The structure for this event type contains:

[* generated on EnterWindow and Focusin when KeymapState selected */
typedef struct {

int type; /* KeymapNotify */

unsigned long serial; /* # of last request processed by
server */

Bool send_event; [* true if this came from a SendEvent
request */

Display *display; [* Display the event was read from */

Window window;
char key vector[32];
} XKeymapEvent;

The window member is not used but is present to aid some toolkits. The key_ vector member is
set to the bit vector of the keyboard. Each bit set to 1 indicates that the corresponding key is
currently pressed. The vector is represented as 32 bytes. Byte N (from 0) contains the bits for
keys 8N to 8N + 7 with the least-significant bit in the byte representing key 8N.

X/0pen CAE Specification

0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Events Exposure Events

11.9 Exposure Events

The X protocol does not guarantee to preserve the contents of window regions when the
windows are obscured or reconfigured. Some implementations may preserve the contents of
windows. Other implementations are free to destroy the contents of windows when exposed. X
expects client applications to assume the responsibility for restoring the contents of an exposed
window region. (An exposed window region describes a formerly obscured window whose
region becomes visible.) Therefore, the X server sends Expose events describing the window and
the region of the window that has been exposed. A naive client application usually redraws the
entire window. A more sophisticated client application redraws only the exposed region.

11.9.1 Expose Events

The X server can report Expose events to clients wanting information about when the contents of
window regions have been lost. The circumstances in which the X server generates Expose
events are not as definite as those for other events. However, the X server never generates
Expose events on windows whose class you specified as InputOnly. The X server can generate
Expose events when no valid contents are available for regions of a window and either the
regions are visible, the regions are viewable and the server is (perhaps newly) maintaining
backing store on the window, or the window is not viewable but the server is (perhaps newly)
honouring the window's backing-store attribute of Always or WhenMapped. The regions
decompose into an (arbitrary) set of rectangles, and an Expose event is generated for each
rectangle. For any given window, the X server guarantees to report contiguously all of the
regions exposed by some action that causes Expose events, such as raising a window.

To receive Expose events, set the ExposureMask bit in the event-mask attribute of the window.
The structure for this event type contains:

typedef struct {

int type; [* Expose */

unsigned long serial; /* # of last request processed by
server */

Bool send_event; [* true if this came from a SendEvent
request */

Display *display; [* Display the event was read from */

Window window;

int x, vy;

int width, height;

int count; /* if non-zero, at least this many
more */

} XExposeEvent;

The window member is set to the exposed (damaged) window. The x and y members are set to
the coordinates relative to the window's origin and indicate the upper-left corner of the
rectangle. The width and height members are set to the size (extent) of the rectangle. The count
member is set to the number of Expose events that are to follow. If count is zero, no more Expose
events follow for this window. However, if count is non-zero, at least that number of Expose
events (and possibly more) follow for this window. Simple applications that do not want to
optimize redisplay by distinguishing between subareas of its window can just ignore all Expose
events with non-zero counts and perform full redisplays on events with zero counts.

Window Management (X11R5): Xlib - C Language Binding 225
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Exposure Events Events

11.9.2 GraphicsExpose and NoExpose Events

The X server can report GraphicsExpose events to clients wanting information about when a
destination region could not be computed during certain graphics requests: XCopyArea or
XCopyPlane. The X server generates this event whenever a destination region could not be
computed due to an obscured or out-of-bounds source region. In addition, the X server
guarantees to report contiguously all of the regions exposed by some graphics request (for
example, copying an area of a drawable to a destination drawable).

The X server generates a NoExpose event whenever a graphics request that might produce a
GraphicsExpose event does not produce any. In other words, the client is really asking for a
GraphicsExpose event but instead receives a NoExpose event.

To receive GraphicsExpose or NoExpose events, you must first set the graphics-exposure attribute
of the graphics context to True. You also can set the graphics-expose attribute when creating a
graphics context using XCreateGC or by calling XSetGraphicsExposures.

The structures for these event types contain:

typedef struct {

int type; /* GraphicsExpose */

unsigned long serial; /* # of last request processed by
server */

Bool send_event; [* true if this came from a SendEvent
request */

Display *display; [* Display the event was read from */

Drawable drawable;

int x, vy;

int width, height;

int count; /* if non-zero, at least this many
more */

int major_code; [* core is CopyArea or CopyPlane */

int minor_code; /* not defined in the core */

} XGraphicsExposeEvent;
typedef struct {

int type; /* NoExpose */
unsigned long serial; /* # of last request processed by
server */
Bool send_event; [* true if this came from a SendEvent
request */
Display *display; [* Display the event was read from */
Drawable drawable;
int major_code; [* core is CopyArea or CopyPlane */
int minor_code; /* not defined in the core */

} XNoExposeEvent;

Both structures have these common members; drawable, major_code and minor_code. The
drawable member is set to the drawable of the destination region on which the graphics request
was to be performed. The major_code member is set to the graphics request initiated by the
client and can be either X_CopyArea or X_CopyPlane. If it is X_CopyArea, a call to XCopyArea
initiated the request. If it is X_CopyPlane, a call to XCopyPlane initiated the request. These
constants are defined in <X11/Xproto.h>. The minor_code member, like the major_code
member, indicates which graphics request was initiated by the client. However, the minor_code
member is not defined by the core X protocol and will be zero in these cases, although it may be
used by an extension.

226 X/Open CAE Specification
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Events Exposure Events

The XGraphicsExposeEvent structure has these additional members: X, y, width, height and count.
The x and y members are set to the coordinates relative to the drawable’s origin and indicate the
upper-left corner of the rectangle. The width and height members are set to the size (extent) of
the rectangle. The count member is set to the number of GraphicsExpose events to follow. If
count is zero, no more GraphicsExpose events follow for this window. However, if count is non-
zero, at least that number of GraphicsExpose events (and possibly more) are to follow for this
window.

Window Management (X11R5): Xlib - C Language Binding 227
0 1995, X/Open Company Limited. NIE111]09,9,.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9.0.

Window State Change Events Events

11.10 Window State Change Events

The following sections discuss:
« CirculateNotify events
« ConfigureNotify events
- CreateNotify events
« DestroyNotify events
- GravityNotify events
- MapNotify events
- MappingNotify events
« ReparentNotify events
- UnmapNotify events